Skip to main content

Recent Development of Chitosan Nanocomposites with Multiple Potential Uses

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Abstract

This chapter reviews an actual relevant literature about the most important methods used in the processing of chitosan nanocomposites, which are based on most extensively used biodegradable polymer matrices. A particular attention has been focused on the biodegradable polymer chitosan because of their widespread use in the bionanocomposite films field. Thus, the processing procedures and the results obtained of various applications from chitosan nanocomposite films have been compiled. The current research trends in chitosan-based material films for applications, including biodegradable composites and the use of chitosan are presented. This chapter will increase the interest of researchers in chitosan-based chitosan nanocomposites and the development of new ideas in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009

    Article  CAS  Google Scholar 

  2. Thakur VK, Singha AS, Kaur I et al (2011) Studies on analysis and characterization of phenolic composites fabricated from lignocellulosic fibres. Polym Polym Compos 19:505–511

    CAS  Google Scholar 

  3. Ferreira AS, Cláudia N, Alichandra C, Paula F, Colimbra MA (2014) Influence of grape pomace extract incorporation on chitosanfilms properties. Carbohydr Polym 113:490–499

    Article  CAS  Google Scholar 

  4. Kurek M, Guinault A, Voilley A, Galic K, Debeaufort F (2014) Effect of relative humidity on carvacrol release and permeation properties of chitosan based films and coatings. Food Chem 144:9–17

    Google Scholar 

  5. Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Article  CAS  Google Scholar 

  6. Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096

    Article  CAS  Google Scholar 

  7. Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  Google Scholar 

  8. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  9. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    Article  CAS  Google Scholar 

  10. Dhakal HN, Zhang ZY, Guthrie R, MacMullen J, Bennett N (2013) Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr Polym 96:1–8

    Article  CAS  Google Scholar 

  11. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  12. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271

    Article  CAS  Google Scholar 

  13. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  CAS  Google Scholar 

  14. Petzold K, Einfeldt L, Gunther W, Stein A, Klemm D (2001) Regioselective functionalization of starch: synthesis and 1H NMR characterization of 6-O-silylethers. Biomacromolecules 2:965–969

    Google Scholar 

  15. He R, Wang XL, Wang YZ, Yang KK, Zeng JB, Ding SD (2006) A study on grafting poly(1,4-dioxan-2-one) onto starch via 2, 4-tolylene diisocyanate. Carbohydr Polym 65:28–34

    Google Scholar 

  16. Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch-Starke 40:44–50

    Google Scholar 

  17. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: A review. J Macromol Sci Polym Rev 231–274

    Google Scholar 

  18. Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Google Scholar 

  19. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Google Scholar 

  20. Curvelo AAS, Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr Polym 45:183–188

    Google Scholar 

  21. Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    Google Scholar 

  22. Thakur VK, Singha AS, Thakur MK (2012) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Google Scholar 

  23. Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    Google Scholar 

  24. Chen L, Qiu X, Xie Z, Hong Z, Sun J, Chen X, Jing X (2006) Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer. Carbohydr Polym 65:75–80

    Google Scholar 

  25. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Google Scholar 

  26. Carothers WH, Dorough GL, van Natta FJ (1932) Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc 54:761–772

    Google Scholar 

  27. Sosnowski S, Gadzinowski M, Slowkowski S (1996) Poly(l, l-lactide) microspheres by ring-opening polymerization. Macromolecules 29:4556–4564

    Google Scholar 

  28. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Google Scholar 

  29. Li ZQ, Zhou XD, Pei CH (2010) Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose. Int J Polym Mater 59:725–737

    Google Scholar 

  30. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Google Scholar 

  31. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465

    Google Scholar 

  32. Xanthos M (1992) Reactive extrusion: principles and practice. Hanser Publishers, Oxford University Press, Oxford

    Google Scholar 

  33. Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, Li X, Luo F, Zhao X, Wei Y, Qian Z (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99

    Google Scholar 

  34. Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD, Li GZ, Gou ML, Wang K, Tu MJ, Wei YQ, Qian ZYJ (2008) Thermoreversible gel–sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater 84B:165–175

    Google Scholar 

  35. Lu C, Guo S-R, Zhang Y, Yin M (2006) Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polym Int 55:694–700

    Google Scholar 

  36. Li Z, Yin H, Zhang Z, Liu KL, Li J (2012) Supramolecular anchoring of DNA polyplexes in cyclodextrin-based polypseudorotaxane hydrogels for sustained gene delivery. Biomacromolecules 13:3162–3172

    Google Scholar 

  37. He C, Sun J, Deng C, Zhao T, Deng M, Chen X, Jing X (2004) Study of the synthesis, crystallization, and morphology of Poly(ethylene glycol)−Poly(ε-caprolactone) Diblock copolymers. Biomacromolecules, 5, 2042–2047

    Google Scholar 

  38. Li Z, Beng Hoon Tan BH (2014) Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Mater Sci Eng C. (In press). doi: 10.1016/j.msea.2014.06.003. http://www.sciencedirect.com/science/article/pii/S0928493114003658

  39. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97:1979–1987

    Google Scholar 

  40. Stiubianu G, Nistor A, Vlad A, Cazacu M (2011) Modification of water sorption capacity of polydimethylsiloxane based composites by incorporation of lignin. Materiale Plastice 48:289–294

    Google Scholar 

  41. Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129:1274–1279

    Google Scholar 

  42. Thakur VK, Thakur MK, Gupta RK (2013) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    Google Scholar 

  43. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Google Scholar 

  44. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Google Scholar 

  45. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502

    Google Scholar 

  46. Fernandes EM, Aroso IM, Mano JF, Covas JA, Reis RL (2014) Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Compos B Eng 67:371–380

    Google Scholar 

  47. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81–142

    Google Scholar 

  48. Thakur VK, Thakur MK, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    Google Scholar 

  49. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503

    Google Scholar 

  50. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Google Scholar 

  51. Chaplin M (2010) Water structure and science. http://www.lsbu.ac.uk/water/hycel.html. Accessed Sept 2010

    Google Scholar 

  52. Hubble M, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, review. BioResources 3:929–980

    Google Scholar 

  53. Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose-synthesizing operons (acs operon) of Acterobacter xylinum: implications for cellulose crystallization. J Bacteriol 176(18):5735–5752

    Google Scholar 

  54. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699

    Google Scholar 

  55. Azizi Samir MAS, Alloin F, Sanchez JY, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393

    Google Scholar 

  56. Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:4839–4844

    Google Scholar 

  57. Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157

    Google Scholar 

  58. Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Google Scholar 

  59. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Google Scholar 

  60. McCreight KW, Hoffman DC, Hale WR. Crosslinkable cellulose ester compositions for films for use in optical devices, PCT Int. Appl. 2006-US20123, 2005-648808, 54

    Google Scholar 

  61. Heux L, Chauve G, Bonnini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Google Scholar 

  62. Yang Q, Pan X, Huang F, Li K (2011) Synthesis and characterization of cellulose fibers grafted with hyperbranched poly(3-methyl-3-oxetanemethanol). Cellulose 18(6):1611–1621

    Google Scholar 

  63. Lönnberg H, Fogelström L, Berglund L, Malmström E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly (Îμ-caprolactone)—synthesis and characterization. Eur Polym J 44(9):2991–2997

    Google Scholar 

  64. Tran CD, Duri S, Delneri A, Franko M (2013) Chitosan-cellulose composite materials: preparation, characterization and application for removal of microcystin. J Hazard Mater 252–253:355–366

    Google Scholar 

  65. Muzzarelli RAA et al (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87:995–1012

    Google Scholar 

  66. Vakili M, Rafatullaha M, Salamatinia B, Abdullahc, AZ, Ibrahima MH, Tanb KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113, 115–130

    Google Scholar 

  67. Moradi DS, Bahar R, Mashinchian MA, Aberoomand AP (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355

    Google Scholar 

  68. Pitakpoolsil W, Hunsom M (2014) Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: parameter optimization and process kinetics. J Environ Manage 133:284–292

    Google Scholar 

  69. Tanhaei B, Ayati A, Lahtinen M, Sillanpa M (2015) Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chem Eng J  259:1–10

    Google Scholar 

  70. Vieira Rodrigo S, Emerson Meneghetti, Paula Baroni, Eric Guibal, de La Cruz González, Victor M, Alfonso Caballero, Rodríguez-Castellón Enrique, Beppu Marisa M (2014) Chromium removal on chitosan-based sorbents—an EXAFS/XANES investigation of mechanism. Mater Chem Phys 146:412–417

    Google Scholar 

  71. Abdollahi M, Rezaei M, Farzi G (2014) Influence of chitosan/clay functional bionanocomposite activated with rosemary essential oil on the shelf life of fresh silver carp. Int J Food Sci Technol 49:811–818

    Google Scholar 

  72. Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157

    Google Scholar 

  73. Wang L, Sun Y, Yang X (2014) Fabrication and characterization of ZnxCd1−xS nanoparticles in chitosan alginate nanocomposite films. Ceram Int 40:4869–4873

    Google Scholar 

  74. Wang B, Ji X, Zhao H, Wang N, Li X, Ni R, Liu Y (2014) An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue–chitosan and gold nanoparticles–chitosan nanocomposite films. Biosens Bioelectron 55:113–119

    Google Scholar 

  75. Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S, Dadashi S (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154

    Google Scholar 

  76. Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 69:185–191

    Google Scholar 

  77. He L, Wang H, Xia G, Sun J, Song R (2014) Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl Surf Sci 314:510–515

    Google Scholar 

  78. Zhang L, Han G, Liu Y, Tang J, Tang W (2014) Immobilizing haemoglobin on gold/graphene–chitosan nanocomposite as efficient hydrogen peroxide biosensor. Sens Actuators B: Chem 197:164–171

    Google Scholar 

  79. Xia X, Zheng Z, Zhang Y, Zhao X, Wang C (2014) Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sens Actuators B: Chem 192:42–50

    Google Scholar 

  80. Seyed Dorraji MS, Ahadzadeh I, Rasoulifard MH (2014) Chitosan/polyaniline/MWCNT nanocomposite fibers as an electrode material for electrical double layer capacitors. Int J Hydrog Energy 39:9350–9355

    Google Scholar 

  81. Justin R, Chen B (2014) Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydr Polym 103:70–80

    Google Scholar 

  82. Jeyapragasam T, Saraswathi R (2014) Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide–chitosan nanocomposite. Sensors Actuators B Chem 191:681–687

    Google Scholar 

  83. Sollogoub C, Guinault A, Bonnebat C, Bennjima M, Akrour L, Fauvarque JF et al (2009) Formation and characterization of crosslinked membranes for alkaline fuel cells. J Membr Sci 335(2009):37–42

    Google Scholar 

  84. Konwar A, Gogoi N, Majumdar G, Chowdhury D (2014) Green Chitosan-carbon dots nanocomposite hydrogel film with superior properties. carbohydrate polymers. (in press, Accepted Manuscript)

    Google Scholar 

  85. Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15

    Google Scholar 

  86. Sameh Hassan S, Suzuki M, Ahmed Abd El-Moneim A (2014) Synthesis of MnO2–chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. J Power Sources 246:68–73

    Google Scholar 

  87. Pereda M, Alain Dufresne A, Mirta I. Arangurena M, Marcovicha NE (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026

    Google Scholar 

  88. Hebeish AA, Ramadan MA, Montaser AS, Farag AM (2014) Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int J Biol Macromol 68:178–184

    Google Scholar 

  89. Srivastava M, Singh J, Mishra RK, Singh MK, Ojha AK, Yashpal M, Sudhanshu S (2014) Novel conducting lithium ferrite/chitosan nanocomposite: synthesis, characterization, magnetic and dielectric properties. Curr Appl Phys 14:980–990

    Google Scholar 

  90. Pandele AM, Ionita M, Crica L, Dinescu S, Costache M, Iovu H (2014) Synthesis, characterization, and in vitro studies of graphene oxide/chitosan–polyvinyl alcohol films. Carbohydr Polym 102:813–820

    Google Scholar 

  91. Giannakas A, Grigoriadi K, Leontiou A, Barkoula NM, Ladavos A (2014) Preparation, characterization, mechanical and barrier properties investigation of chitosan–clay nanocomposites. Carbohydr Polym 108:103–111

    Google Scholar 

  92. Dias MV, Azevedo VM, Borges SV, de Soares NFF, de Fernandes RVB, Marques JJ, Medeiros EAA (2014) Development of chitosan/montmorillonite nanocomposites with encapsulated α-tocopherol. Food Chem 165:323–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Ferreira do Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

de Freitas Barros, F.C., de Oliveira Sousa Neto, V., Carvalho, T.V., Vieira, R.S., Silva, G.M.M., do Nascimento, R.F. (2015). Recent Development of Chitosan Nanocomposites with Multiple Potential Uses. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 74. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2473-0_16

Download citation

Publish with us

Policies and ethics