Skip to main content

Advertisement

Log in

Designs of zwitterionic polymers

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Zwitterionic polymers have become a kind of potential biomaterial system used to design nonfouling interfaces between general materials and biological environments. This antifouling polymer system is inspired by biology, especially due to the presence of zwitterions or alternately charged groups on cell membranes and protein surfaces. Previous systematic studies have shown that the zwitterionic polymer system can exhibit excellent anti-adsorption, anti-coagulation, anti-adhesion and anti-attachment functions for biological components such as human proteins, blood cells, tissue cells, general bacteria, and marine shellfish. Research in recent years has pointed out that the latest development of zwitterionic polymers is of great significance in the fields of bio-inert materials, dental care, biomedical devices, membrane bio-separation, medical stents, and drug delivery carriers. This review article focuses on sorting out and illustrating the research and development of molecular design, material properties, engineering process, and system applications of zwitterionic polymers, which is expected to inspire new ideas and directions in bio-inert polymer field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen S, Li LY, Zhao C, Zheng J (2010) Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    Article  CAS  Google Scholar 

  2. Merian T, Goddard JM (2012) Advances in nonfouling materials: Perspectives for the food industry. J Agric Food Chem 60:2943–2957

    Article  CAS  PubMed  Google Scholar 

  3. Chen SF, Zheng J, Li LY, Jiang SY (2005) Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc 127:14473–14478

    Article  CAS  PubMed  Google Scholar 

  4. Chen SF, Jiang SY (2008) A new avenue to nonfouling materials. Adv Mater 20:335–338

    Article  CAS  Google Scholar 

  5. Chang Y, Chu WL, Chen WY, Zheng J, Liu LY, Ruaan RC, Higuchi A (2010) A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces. J Biomed Mater Res 93A:400–408

    CAS  Google Scholar 

  6. Zhao C, Li L, Yu Q, Zheng J (2011) Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir 27:4906–4913

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Zhao C, Zhang M, Chen Q, Ma J, Zheng J (2016) Molecular understanding and structural-based design of polyacrylamides and polyacrylates as antifouling materials. Langmuir 32:3315–3330

    Article  CAS  PubMed  Google Scholar 

  8. Montheard JP, Chatzopoulos M, Chappard D (2006) 2-Hydroxyethyl Methacrylate (HEMA): Chemical properties and applications in biomedical fields. J Macromol Sci Part C 23:1–34

    Google Scholar 

  9. Chang Y, Ko CY, Shih YJ, Quemener D, Deratani A, Wei TC, Wang DM, Lai JY (2009) Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. J Membr Sci 345:160–169

    Article  CAS  Google Scholar 

  10. Venault A, Yang HS, Chiang Y, Lee BS, Ruaan RC, Chang Y (2014) Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings. ACS Appl Mater Interfaces 6:3201–3210

    Article  CAS  PubMed  Google Scholar 

  11. Chang Y, Cheng TY, Shih YJ, Lee KR, Lai JY (2008) Biofouling-resistance expanded poly(tetrafluoroethylene) membrane with a hydrogel-like layer of surface-immobilized poly(ethylene glycol) methacrylate for human plasma protein repulsions. J Membr Sci 323:77–84

    Article  CAS  Google Scholar 

  12. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  13. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angewandte Chemie-International Edition 49:6288–6308

    Article  CAS  PubMed  Google Scholar 

  14. Mi L, Jiang SY (2014) Integrated antimicrobial and nonfouling zwitterionic Polymers. Angewandte Chemie-International Edition 53:1746–1754

    Article  CAS  PubMed  Google Scholar 

  15. Shao Q, Jiang SY (2014) Molecular understanding and design of zwitterionic materials. Adv Mater 27:15–26

    Article  PubMed  CAS  Google Scholar 

  16. Sin MC, Chen SH, Chang Y (2014) Hemocompatibility of zwitterionic interfaces and membranes. Polym J 46:436–443

    Article  CAS  Google Scholar 

  17. Venault A, Chang Y (2019) Designs of zwitterionic interfaces and membranes. Langmuir 35:1714–1726

    Article  CAS  PubMed  Google Scholar 

  18. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189

    Article  CAS  PubMed  Google Scholar 

  19. Laschewsky A (2014) Structures and synthesis of zwitterionic polymers. Polymers 6:1544–1601

    Article  CAS  Google Scholar 

  20. Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    Article  CAS  PubMed  Google Scholar 

  21. Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH (2011) Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces 3:1228–1237

    Article  CAS  PubMed  Google Scholar 

  22. Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY (2008) A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 24:5453–5458

    Article  CAS  PubMed  Google Scholar 

  23. Yang W, Zhang L, Wang SL, White AD, Jiang SY (2009) Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials 30:5617–5621

    Article  CAS  PubMed  Google Scholar 

  24. Chang Y, Shih YJ, Lai CJ, Kung HH, Jiang SY (2013) Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Adv Func Mater 23:1100–1110

    Article  CAS  Google Scholar 

  25. Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang SY (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80:7894–7901

    Article  CAS  PubMed  Google Scholar 

  26. Ishihara K (2019) Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir 35:1778–1787

    Article  CAS  PubMed  Google Scholar 

  27. Inoue Y, Ishihara K (2010) Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Colloids Surf, B 81:350–357

    Article  CAS  Google Scholar 

  28. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res, Part A 39:323–330

    Article  CAS  Google Scholar 

  29. Chang Y, Chen SF, Zhang Z, Jiang SY (2006) Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 22:2222–2226

    Article  CAS  PubMed  Google Scholar 

  30. Chiang YC, Chang Y, Higuchi A, Chen WY, Ruaan RC (2009) Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J Membr Sci 339:151–159

    Article  CAS  Google Scholar 

  31. Zhang Z, Chen SF, Chang Y, Jiang SY (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110:10799–10804

    Article  CAS  PubMed  Google Scholar 

  32. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY (2010) Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir 26:3522–3530

    Article  CAS  PubMed  Google Scholar 

  33. Chou YN, Wen TC, Chang Y (2016) Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomater 40:78–91

    Article  CAS  PubMed  Google Scholar 

  34. Hsiao SW, Venault A, Yang HS, Chang Y (2014) Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMA(n) zwitterionic copolymer - Concomitant effects of surface topography and surface chemistry on attachment of live bacteria. Colloids Surf, B 118:254–260

    Article  CAS  Google Scholar 

  35. Chang Y, Chang Y, Higuchi A, Shih YJ, Li PT, Chen WY, Tsai EM, Hsiue GH (2012) Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes. Langmuir 28:4309–4317

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Lin WF, Wang Z, Chen SF, Chang Y (2012) Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28:7436–7441

    Article  CAS  PubMed  Google Scholar 

  37. Shih YJ, Chang Y (2010) Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir 26:17286–17294

    Article  CAS  PubMed  Google Scholar 

  38. Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, Chu CW, Ruaan RC, Higuchi A (2010) Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromol 10:2092–2100

    Article  CAS  Google Scholar 

  39. Shih YJ, Chang Y, Deratani A, Quemener D (2012) Schizophrenic hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in Human Blood. Biomacromol 13:2849–2858

    Article  CAS  Google Scholar 

  40. Shih YJ, Chang Y, Quemener D, Yang HS, Jhong JF, Ho FM, Higuchi A, Chang Y (2014) Hemocompatibility of polyampholyte copolymers with well-defined charge bias in human blood. Langmuir 30:6489–6496

    Article  CAS  PubMed  Google Scholar 

  41. He Y, Hower J, Chen SF, Bernards MT, Chang Y, Jiang SY (2008) Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 24:10358–10364

    Article  CAS  PubMed  Google Scholar 

  42. Shao Q, He Y, White AD, Jiang SY (2010) Difference in hydration between carboxybetaine and sulfobetaine. J Phys Chem B 114:16625–16631

    Article  CAS  PubMed  Google Scholar 

  43. Leng C, Han XF, Shao Q, Zhu YH, Li YT, Jiang SY, Chen Z (2014) In situ probing of the surface hydration of zwitterionic polymer brushes: Structural and environmental effects. J Phys Chem C 118:15840–15845

    Article  CAS  Google Scholar 

  44. Del Grosso CA, Leng C, Zhang KX, Hung HC, Jiang SY, Chen Z, Wilker JJ (2020) Surface hydration for antifouling and bio-adhesion. Chem Sci 11:10367–10377

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ishihara K, Mu MW, Konno T, Inoue Y, Fukazawa K (2017) The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed 28:884–899

    Article  CAS  PubMed  Google Scholar 

  46. Huang CJ, Mi L, Jiang SY (2012) Interactions of alginate-producing and -deficient Pseudomonas aeruginosa with zwitterionic polymers. Biomaterials 33:3626–3631

    Article  CAS  PubMed  Google Scholar 

  47. Shao Q, Jiang SY (2014) Influence of charged groups on the properties of zwitterionic moieties: a molecular simulation study. J Phys Chem B 118:7630–7637

    Article  CAS  PubMed  Google Scholar 

  48. Li GZ, Xue H, Gao CL, Zhang FB, Jiang SY (2010) Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules 43:14–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chiu CY, Chang Y, Liu TH, Chou YN, Yen TJ (2021) Convergent charge interval spacing of zwitterionic 4-vinylpyridine carboxybetaine structures for superior blood-inert regulation in amphiphilic phases. J Phys Chem B. https://doi.org/10.1039/D1TB01374B

    Article  PubMed  Google Scholar 

  50. Liu YL, Zhang D, Ren BP, Gong X, Xu LJ, Feng ZQ, Chang Y, He Y, Zheng J (2020) Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J Phys Chem B 8:3814–3828

    CAS  Google Scholar 

  51. Kasoma Y, Nakabayashi N, Eiichi M, Junuchu Y (1978) Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Kōbunshi Rombun Shū 35:423–427

    Google Scholar 

  52. Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res 24:1069–1077

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Z, Zhang M, Chen SF, Horbetta TA, Ratner BD, Jiang SY (2008) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29:4285–4291

    Article  CAS  PubMed  Google Scholar 

  54. Venault A, Chang Y, Yang HS, Lin PY, Shih YJ, Higuchi A (2014) Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility. J Membr Sci 454:253–263

    Article  CAS  Google Scholar 

  55. Chou YN, Chang Y, Wen TC (2014) Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. ACS Appl Mater Interfaces 7:10096–10107

    Article  CAS  Google Scholar 

  56. Venault A, Chou YN, Wang YH, Hsu CH, Chou CJ, Bouyer D, Lee KR, Chang Y (2018) A combined polymerization and self-assembling process for the fouling mitigation of PVDF membranes. J Membr Sci 547:134–145

    Article  CAS  Google Scholar 

  57. Dizon GV, Lee YS, Venault A, Maggay IV, Chang Y (2021) Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. J Membr Sci 618:118753

    Article  CAS  Google Scholar 

  58. Nehache S, Yeh CC, Semsarilar M, Deratani A, Chang Y, Quemener D (2016) Anti-bioadhesive coating based on easy to make pseudozwitterionic RAFT block copolymers for blood-contacting applications. Macromol Biosci 16:57–62

    Article  CAS  PubMed  Google Scholar 

  59. Chiag YC, Chang Y, Chen WY, Ruaan RC (2012) Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with PEGylated copolymers. Langmuir 28:1399–1407

    Article  CAS  PubMed  Google Scholar 

  60. Tan CME, Dizon GV, Chen SH, Venault A, Chou YN, Tayo L, Chang Y (2020) Temperature-triggered attachment and detachment of general human bio-foulants on zwitterionic polydimethylsiloxane. J Phys Chem B 8:8853–8863

    CAS  Google Scholar 

  61. Fowler PMPT, Dizon GV, Tayo LL, Caparanga AR, Huang J, Zheng J, Aimar P, Chang Y (2020) Surface zwitterionization of expanded poly(tetrafluoroethylene) via dopamine-assisted consecutive immersion coating. ACS Appl Mater Interfaces 12:41000–41010

    Article  CAS  PubMed  Google Scholar 

  62. Ladd J, Zhang Z, Chen S, Hower JC, Jiang SY (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromol 9:1357–1361

    Article  CAS  Google Scholar 

  63. Tang SH, Domino MY, Venault A, Lin HT, Hsieh C, Higuchi A, Chinnathambi A, Alharbi SA, Tayo LL, Chang Y (2019) Bioinert control of zwitterionic poly(ethylene terephtalate) fibrous membranes. Langmuir 35:1727–1739

    Article  CAS  PubMed  Google Scholar 

  64. Chou YN, Venault A, Cho CH, Sin MC, Yeh LC, Jhong JF, Chinnathambi A, Chang Y, Chang Y (2017) Epoxylated zwitterionic triblock copolymers grafted onto metallic surfaces for general biofouling mitigation. Langmuir 33:9822–9835

    Article  CAS  PubMed  Google Scholar 

  65. Venault A, Hsu CH, Ishihara K, Chang Y (2018) Zwitterionic bi-continuous membranes from a phosphobetaine copolymer/poly(vinylidene fluoride) blend via VIPS for biofouling mitigation. J Membr Sci 550:377–388

    Article  CAS  Google Scholar 

  66. Maggay IV, Venault A, Fang CY, Yang CC, Hsu CH, Chou CY, Ishihara K, Chang Y (2021) Zwitterionized nanofibrous poly(vinylidene fluoride) membranes for improving the healing of diabetic wounds. ACS Biomater Sci Eng 7:562–576

    Article  CAS  PubMed  Google Scholar 

  67. Huang CJ, Wang LC, Shyue JJ, Chang YC (2014) Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly. Langmuir 30:12638–12646

    Article  CAS  PubMed  Google Scholar 

  68. De Vera JS, Venault A, Chou YN, Tayo L, Chiang HC, Aimar P, Chang Y (2017) Self-cleaning interfaces of polydimethylsiloxane grafted with pH-responsive zwitterionic copolymers. Langmuir 35:1357–1368

    Article  CAS  Google Scholar 

  69. Maggay IV, Suba MCAM, Aini HN, Wu CJ, Tang SH, Aquino RB, Chang Y, Venault A (2021) Thermostable antifouling zwitterionic vapor-induced phase separation membranes. J Membr Sci 627:119227

    Article  CAS  Google Scholar 

  70. Dizon GV, Chou YN, Yeh LC, Venault A, Huang J, Chang Y (2018) Bio-inert interfaces via biomimetic anchoring of a zwitterionic copolymer on versatile substrates. J Colloid Interface Sci 529:77–89

    Article  CAS  PubMed  Google Scholar 

  71. Yang CC, Lo CT, Luo YL, Venault A, Chang Y (2021) Thermally stable bioinert zwitterionic sulfobetaine interfaces tolerated in the medical sterilization process. ACS Biomater Sci Eng 7:1031–1045

    Article  CAS  PubMed  Google Scholar 

  72. Venault A, Subarja A, Chang Y (2017) Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth. Langmuir 33:2460–2471

    Article  CAS  PubMed  Google Scholar 

  73. Hsu CH, Venault A, Zheng HZ, Lo CT, Yang CC, Chang Y (2021) Failure of sulfobetaine methacrylate as antifouling material for steam-sterilized membranes and a potential alternative. J Membr Sci 620:118929

    Article  CAS  Google Scholar 

  74. Venault A, Lai MW, Jhong JF, Yeh CC, Yeh LC, Chang Y (2018) Superior bioinert capability of zwitterionic poly(4-vinylpyridine propylsulfobetaine) withstanding clinical sterilization for extended medical applications. ACS Appl Mater Interfaces 10:17771–17783

    Article  CAS  PubMed  Google Scholar 

  75. Jhong JF, Venault A, Hou CC, Chen SH, Wei TC, Zheng J, Huang J, Chang Y (2013) Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing. ACS Appl Mater Interfaces 5:6732–6742

    Article  CAS  PubMed  Google Scholar 

  76. Jhong JF, Venault A, Liu L, Zheng J, Chen SH, Higuchi A, Huang J, Chang Y (2014) Introducing mixed-charge copolymers as wound dressing biomaterials. ACS Appl Mater Interfaces 6:9858–9870

    Article  CAS  PubMed  Google Scholar 

  77. Venault A, Lin KH, Tang SH, Dizon GV, Hsu CH, Maggay IVB, Chang Y (2020) Zwitterionic electrospun PVDF fibrous membranes with a well-controlled hydration for diabetic wound recovery. J Membr Sci 598:117648

    Article  CAS  Google Scholar 

  78. Lin HT, Venault A, Chang Y (2019) Zwitterionized chitosan based soft membranes for diabetic wound healing. J Membr Sci 591:117319

    Article  CAS  Google Scholar 

  79. Venault A, Bai YW, Dizon GV, Chou HYE, Chiang HC, Lo CT, Zheng J, Aimar P, Chang Y (2019) Healing kinetics of diabetic wounds controlled with charge-biased hydrogel dressings. J Phys Chem B 7:7184–7194

    CAS  Google Scholar 

  80. Venault A, Liou CS, Yeh LC, Jhong JF, Huang J, Chang Y (2017) Turning expanded poly(tetrafluoroethylene) membranes into potential skin wound dressings by grafting a bioinert epoxylated PEGMA copolymer. ACS Biomater Sci Eng 3:3338–3350

    Article  CAS  PubMed  Google Scholar 

  81. Chen YW, Venault A, Jhong JF, Ho HT, Liu CC (2017) Developing blood leukocytes depletion membranes from the design of bioinert PEGylated hydrogel interfaces with surface charge control. J Membr Sci 537:209–219

    Article  CAS  Google Scholar 

  82. Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y (2019) A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Membr Sci 584:148–160

    Article  CAS  Google Scholar 

  83. Yeh CC, Nakagawa K, Chang Y, Hu CC (2020) Influence of photocatalysis on blood cell attachment over protein-immobilized polystyrene surfaces modified with a Poly(styrene)-b-Poly(acrylic acid) copolymer. Langmuir 36:3268–3275

    Article  CAS  PubMed  Google Scholar 

  84. Chou YN, Venault A, Wang YH, Chinnathambi A, Higuchi A, Chang Y (2018) Surface zwitterionization on versatile hydrophobic interfaces via a combined copolymerization/self-assembling process. J Phys Chem B 6:4909–4919

    CAS  Google Scholar 

  85. Venault A, Ye CC, Lin YC, Ruaan RC, Higuchi A, Chinnathambi A, Ho HT, Chang Y (2016) Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Acta Biomater 40:130–141

    Article  CAS  PubMed  Google Scholar 

  86. Venault A, Chin YT, Maggay IVB, Yeh CC, Chang Y (2022) Poly(vinylidene fluoride)/poly(styrene-co-acrylic acid) nanofibers as potential materials for blood separation. J Membr Sci 641:119881

    Article  CAS  Google Scholar 

  87. Chen SH, Chang Y, Lee KR, Wei TC, Higuchi A, Ho FM (2012) Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Langmuir 28:17733–17742

    Article  CAS  PubMed  Google Scholar 

  88. Higuchi A, Yang ST, Li PT, Ruaan RC, Chen WY, Chang Y, Chang Y, Tsai EM, Chen YH, Wang HC, Hsu ST, Ling QD (2009) Permeation of blood cells from umbilical cord blood through surface-modified polyurethane foaming membranes. J Membr Sci 339:184–188

    Article  CAS  Google Scholar 

  89. Yeh CC, Venault A, Yeh LC, Chinnathambi A, Alharbi SA, Higuchi A, Chang Y (2017) Universal bioinert control of polystyrene interfaces via hydrophobic-driven self-assembled surface PEGylation with a well-defined block sequence. Macromol Chem Phys 218:1700102

    Article  CAS  Google Scholar 

  90. Sin MC, Lou PT, Cho CH, Chinnathambi A, Alharbi SA, Chang Y (2015) An intuitive thermal-induced surface zwitterionization for versatile, well-controlled haemocompatible organic and inorganic materials. Colloids Surf, B 127:54–64

    Article  CAS  Google Scholar 

  91. Tsai CW, Hu WW, Liu CI, Ruaan RC, Tsai BC, Jin SLC, Chang Y, Chem WY (2015) The consideration of indolicidin modification to balance its hemocompatibility and delivery efficiency. Int J Pharm 494:498–505

    Article  CAS  PubMed  Google Scholar 

  92. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomed 10:3315–3328

    CAS  Google Scholar 

  93. Tayo LL, Venault A, Constantino VGR, Caparanga AR, Chinnathambi A, Alharbi SA, Zheng J, Chang Y (2015) Design of hemocompatible poly(DMAEMA-co-PEGMA) hydrogels for controlled release of insulin. J Appl Polym Sci 132:42365

    Article  CAS  Google Scholar 

  94. Lo CW, Liao WH, Wu CH, Lee JL, Sun MK, Yang HS, Tsai WB, Chen WS (2015) Synergistic effect of PEI and PDMAEMA on transgene expression in vitro. Langmuir 31:6130–6136

    Article  CAS  PubMed  Google Scholar 

  95. Liao WH, Hsiao MY, Lo CW, Yang HS, Sun MK, Lin FH, Chang Y, Chen WS (2017) Intracellular triggered release of DNA-quaternary ammonium polyplex by ultrasound. Ultrason Sonochem 36:70–77

    Article  CAS  PubMed  Google Scholar 

  96. Shih YJ, Venault A, Tayo LL, Chen SH, Higuchi A, Deratani A, Chinnathambi A, Alharbi SA, Quemener D, Chang Y (2017) A zwitterionic-shielded carrier with pH-modulated reversible self-assembly for gene transfection. Langmuir 33:1914–1926

    Article  CAS  PubMed  Google Scholar 

  97. Venault A, Huang YC, Lo JW, Chou CJ, Chinnathambi A, Higuchi A, Chen WS, Chen WY, Chang Y (2017) Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: In vitro and in vivo gene delivery. J Phys Chem B 5:4732–4744

    CAS  Google Scholar 

  98. Chen H, Yang JT, Xiao SW, Hu RD, Bhaway SM, Vogt BD, Zhang MZ, Chen Q, Ma J, Chang Y, Li LY, Zheng J (2016) Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomater 40:62–69

    Article  CAS  PubMed  Google Scholar 

  99. Zhang D, Ren BP, Zhang YX, Liu YL, Chen H, Xiao SW, Chang Y, Yang JT, Zheng J (2020) Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. J Colloid Interface Sci 578:242–253

    Article  CAS  PubMed  Google Scholar 

  100. Venault A, Huang CW, Zheng J, Chinnathambi A, Alharbi SA, Chang Y, Chang Y (2016) Hemocompatible biomaterials of zwitterionic sulfobetaine hydrogels regulated with pH-responsive DMAEMA random sequences. Int J Polym Mater Polym Biomater 65:65–74

    Article  CAS  Google Scholar 

  101. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  CAS  PubMed  Google Scholar 

  102. Liu C, Gu XY, Cui MY, Xu Q, Li RH (2014) A novel ternary copolymerized polyzwitterionic of poly (AM/DMAM/ MAEDAPS): Synthesis and solution properties. J Polym Res 21:620

    Article  CAS  Google Scholar 

  103. Jhiang JS, Wu TH, Chou CJ, Chang Y, Huang CJ (2019) Gel-like ionic complexes for antimicrobial, hemostatic and adhesive properties. J Phys Chem B 7:2878–2887

    CAS  Google Scholar 

  104. Wu RL, Xu SM, Huang XJ, Cao LQ, Feng S, Wang JD (2006) Swelling behaviors of a new Zwitterionic N-carboxymethyl-N, N-dimethyl-N-allylammonium/acrylic acid hydrogel. J Polym Res 13:33–37

    Article  CAS  Google Scholar 

  105. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107

    Article  CAS  Google Scholar 

  106. Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Du JZ, Tang YQ, Lewis AL, Armes SP (2005) pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J Am Chem Soc 127:17982–17983

    Article  CAS  PubMed  Google Scholar 

  108. Schlenoff JB (2014) Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grigoras AG, Racovita S, Vasiliu S, Nistor MT, Dunca S, Barboiu V, Grigoras VC (2012) Dilute solution properties of some polycarboxybetaines with antibacterial activity. J Polym Res 19:8

    Article  CAS  Google Scholar 

  110. Keefe AJ, Jiang SY (2012) Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 4:60–64

    Article  CAS  Google Scholar 

  111. Lu CC, Liu N, Gu X, Li BQ, Wang YN, Gao H, Ma JB, Wu GL (2014) Synthesis and characterization of biocompatible zwitterionic sulfobetaine polypeptides and their resistance to protein adsorption. J Polym Res 21:578

    Article  CAS  Google Scholar 

  112. Hiranphinyophat S, Iwasaki Y (2021) Controlled biointerfaces with biomimetic phosphorus-containing polymers. Sci Technol Adv Mater 22:301–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Che YJ, Tan YB, Cao J, Xu GY (2010) A study of aggregation behavior of a sulfobetaine copolymer in dilute solution. J Polym Res 17:557–566

    Article  CAS  Google Scholar 

  114. Kang JS, Kim J, Choi K, Hong PH, Park HJ, Kim K, Kim YK, Moon G, Jeon H, Lee SY (2021) A water-triggered highly self-healable elastomer with enhanced mechanical properties achieved using localized zwitterionic assemblies. Chem Eng J 420:127636

    Article  CAS  Google Scholar 

  115. Rong GL, Zhou D, Pang JH (2018) Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline. J Polym Res 25:66

    Article  CAS  Google Scholar 

  116. Rahman M, Brazel CS (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29:1223–1248

    Article  CAS  Google Scholar 

  117. Tickner JA, Schettler T, Guidotti T, McCally M, Rossi M (2001) Health risks posed by use of di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med 39:100–111

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Y, Zhu PC, Edgren D (2010) Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J Polym Res 17:725–730

    Article  CAS  Google Scholar 

  119. Sundaram HS, Han X, Nowinski AK, Ella-Menye JR, Wimbish C, Marek P, Senecal K, Jiang SY (2014) One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces. ACS Appl Mater Interfaces 6:6664–6671

    Article  CAS  PubMed  Google Scholar 

  120. Fang LF, Jeon S, Kakihana Y, Kakehi J, Zhu BK, Matsuyama H, Zhao SF (2017) Improved antifouling properties of polyvinyl chloride blend membranes by novel phosphate based-zwitterionic polymer additive. J Membr Sci 528:326–335

    Article  CAS  Google Scholar 

  121. Lin XJ, Boit MO, Wu K, Jain P, Liu EJ, Hsieh YF, Zhou Q, Li BW, Hung HC, Jiang SY (2020) Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. Acta Biomater 109:51–60

    Article  CAS  PubMed  Google Scholar 

  122. Chen J, Liu ZS, Nie XA, Zhou YH, Jiang JC (2018) Plasticizers derived from cardanol: Synthesis and plasticization properties for polyvinyl chloride(PVC). J Polym Res 25:128

    Article  CAS  Google Scholar 

  123. Kyomoto M, Moro T, Saiga K, Hashimoto M, Ito H, Kawaguchi H, Takatori Y, Ishihara K (2012) Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. Biomaterials 33:4451–4459

    Article  CAS  PubMed  Google Scholar 

  124. Jamil MS, Ahmad I, Abdullah I (2006) Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. J Polym Res 13:315–321

    Article  CAS  Google Scholar 

  125. Zhang W, Chu PK, Ji JH, Zhang YH, Fu RKY, Yan Q (2006) Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer 47:931–936

    Article  CAS  Google Scholar 

  126. Rojas-Lema S, Lascano D, Ivorra-Martinez J, Gomez-Caturla J, Balart R, Garcia-Garcia D (2021) Manufacturing and characterization of high-density polyethylene composites with active fillers from persimmon peel flour with improved antioxidant activity and hydrophobicity. Macromol Mater Eng. https://doi.org/10.1002/mame.202100430

    Article  Google Scholar 

  127. Kliewer S, Wicha SG, Broker A, Naundorf T, Catmadim T, Streit WR, Vollstedt C, Kipphardt H (2020) Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium salts. Colloids Surf, B 186:110679

    Article  CAS  Google Scholar 

  128. Abd El-Rahman KM, Ali SAF, Khalil AI, Kandil S (2020) Influence of poly(butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. J Polym Res 27:231

    Article  CAS  Google Scholar 

  129. Wang Y, Kim JH, Choo KH, Lee YS, Lee CH (2000) Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J Membr Sci 169:269–276

    Article  CAS  Google Scholar 

  130. Zhao YH, Wee KH, Bai R (2010) Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J Membr Sci 362:1–2

    Article  CAS  Google Scholar 

  131. Goli KK, Rojas OJ, Genzer J (2012) Formation and antifouling properties of amphiphilic coatings on polypropylene fibers. Biomacromol 13:3769–3779

    Article  CAS  Google Scholar 

  132. Huang JY, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K (2007) Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromol 8:1396–1399

    Article  CAS  Google Scholar 

  133. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  CAS  Google Scholar 

  134. Chiu HT, Hsiao YK (2006) Compatibilization of poly(ethylene terephthalate)/polypropylene blends with maleic anhydride grafted polyethylene-octene elastomer. J Polym Res 13:153–160

    Article  CAS  Google Scholar 

  135. Harussani MM, Sapuan SM, Rashid U, Khalina A, Ilyas RA (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803:149911

    Article  CAS  PubMed  Google Scholar 

  136. Venault A, Trinh KM, Chang Y (2016) A zwitterionic zP(4VP-r-ODA) copolymer for providing polypropylene membranes with improved hemocompatibility. J Membr Sci 501:68–78

    Article  CAS  Google Scholar 

  137. Qiao YS, Zhang Q, Wang Q, Lin J, Wang JS, Li Y, Wang L (2021) Synergistic anti-inflammatory coating Zipped Up on polypropylene hernia mesh. ACS Appl Mater Interfaces 30:35456–35468

    Article  CAS  Google Scholar 

  138. Chen SH, Chang Y, Ishihara K (2017) Reduced blood cell adhesion on polypropylene substrates through a simple surface zwitterionization. Langmuir 33:611–621

    Article  CAS  PubMed  Google Scholar 

  139. Zhang XX, Jiang XF, Qin W, Zhang K, Xin Z, Zhao SC (2021) Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene. J Polym Res 28:124

    Article  CAS  Google Scholar 

  140. Huang R, Liu ZQ, Yan BY, Li YQ, Li HR, Liu DM, Wang P, Cui FY, Shi WX (2020) Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting. J Membr Sci 595:117488

    Article  CAS  Google Scholar 

  141. Bulanda K, Oleksy M, Oliwa R, Budzik G, Przeszlowski L, Fal J, Jesionowski T (2021) Polymer composites based on polycarbonate (PC) applied to additive manufacturing using melted and extruded manufacturing (MEM) technology. Polymers 13:2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET, Beebe DJ (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Belanger MC, Marois Y (2001) Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res 58:467–477

    Article  CAS  PubMed  Google Scholar 

  144. Chen WH, Chen PC, Wang SC, Yeh JT, Huang CY, Chen KN (2009) UV-curable PDMS-containing PU system for hydrophobic textile surface treatment. J Polym Res 16:601–610

    Article  CAS  Google Scholar 

  145. Goda T, Konno T, Takai M, Moro T, Ishihara K (2006) Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials 27:5151–5160

    Article  CAS  PubMed  Google Scholar 

  146. Yeh SB, Chen CS, Chen WY, Huang CJ (2014) Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 30:11386–11393

    Article  CAS  PubMed  Google Scholar 

  147. Zhou C, Li R, Luo W, Chen Y, Zou HW, Liang M, Li Y (2015) The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. J Polym Res 23:14

    Article  CAS  Google Scholar 

  148. Nakano H, Kakinoki S, Iwasaki Y (2021) Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers. Colloids Surf, B 205:111900

    Article  CAS  Google Scholar 

  149. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    CAS  PubMed  Google Scholar 

  150. Lien WF, Liaw WC, Huang PC, Chang HL, Tsai HS (2011) Preparation of glass fiber clothes reinforced polytetrafluoroethylene film composites using plasma for polytetrafluoroethylene surface modification. J Polym Res 18:773–780

    Article  CAS  Google Scholar 

  151. Yu CL, Yang H, Wang L, Thomson JA, Turng LS, Guan GP (2021) Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. Mater Sci Eng, C Mater Biol Appl 128:112301

    Article  CAS  Google Scholar 

  152. Wang DF, Xu YY, Lin YY, Yilmaz G, Zhang J, Schmidt G, Li Q, Thomson JA, Turng LS (2020) Biologically functionalized expanded polytetrafluoroethylene blood vessel grafts. Biomacromol 21:3807–3816

    Article  CAS  Google Scholar 

  153. Cheng BH, Inoue Y, Ishihara K (2019) Surface functionalization of polytetrafluoroethylene substrate with hybrid processes comprising plasma treatment and chemical reactions. Colloids Surf, B 173:77–84

    Article  CAS  Google Scholar 

  154. Chen YC, Lin HC, Lee YD (2003) The effects of filler content and size on the properties of PTFE/SiO2 composites. J Polym Res 10:247–258

    Article  CAS  Google Scholar 

  155. Venault A, Chang Y, Hsu HH, Jhong JF, Yang HS, Wei TC, Tung KL, Higuchi A, Huang J (2013) Biofouling-resistance control of expanded poly(tetrafluoroethylene) membrane via atmospheric plasma-induced surface PEGylation. J Membr Sci 439:48–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written through contributions of Dr. Yung Chang.

Corresponding author

Correspondence to Yung Chang.

Ethics declarations

Competing interest

The author declare n competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y. Designs of zwitterionic polymers. J Polym Res 29, 286 (2022). https://doi.org/10.1007/s10965-022-03041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03041-2

Keywords

Navigation