Skip to main content
Log in

Synthesis and characterization of pyromellitic dianhydride based sulfonated polyimide: Survey of structure properties with DFT and QTAIM

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Pyromellitic dianhydride (PMDA) and 4,4′-diamino-2,2′-stilbenedisulfonic acid (DSD) were polymerized by polycondensation in 1:1 Sulfonated Polyimide (SPI) m-Cresol. The SPI was characterized by spectroscopic analyses (Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR), ultraviolet–visible spectroscopy (UV–Vis), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)/ differential thermal analysis (DTA), solubility tests and elemental analysis (EA) techniques. Furrhermore, quantum chemical calculations of the synthesized SPI were analyzed by density-functional theory (DFT) with Becke-3-Parameter-Lee–Yang–Parr (B3LYP)/6–311-G basis set to understand electrical and optic features of SPI. Natural Bond Orbital (NBO) analysis and molecular electrostatic potential (MEP) surfaces were calculated. Quantum theory analysis of atoms in molecules (QTAIM) was made using the AIMAll program to find H-bonding, proton interaction, proton transfer and water uptake script. The second degradation stage was observed at a temperature higher than 450 °C in TGA/DTA curve. The variation of the heat flow in reverse heat flow was based on the Tg of SPI occurring around 353.11 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdulhamid MA, Genduso G, Ma X, Pinnau I (2021) Synthesis and characterization of 6FDA/3,5-diamino-2,4,6-trimethylbenzenesulfonic acid-derived polyimide for gas separation applications. Sep Purif Technol 257:117910

    CAS  Google Scholar 

  2. Liaqat K, Rehman W, Saeed S, Waseem M, Fazil S, Shakeel M, Kang P (2018) Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications. Solid State Ionics 319:141–147

    CAS  Google Scholar 

  3. López-Chávez E, Peña-Castañeda Y, Martínez-Magadán J, González-García G, Castillo-Alvarado F, Díaz-Góngora J (2015) Behavior of ionic species in sulfonated PEI using DFT simulations: A study to determine ionic conductivity. Int J Hydrog Energy 40:17332–17337

    Google Scholar 

  4. You PY, Kamarudin SK, Masdar MS (2019) Improved performance of sulfonated polyimide composite membranes with rice husk ash as a bio-filler for application in direct methanol fuel cells. Int J Hydrog Energy 44:1857–1866

    CAS  Google Scholar 

  5. Ito G, Tanaka M, Kawakami H (2018) Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells. Solid State Ionics 317:244–255

    CAS  Google Scholar 

  6. Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555

    Google Scholar 

  7. Hickner MA, Pivovar BS (2005) The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cells 5:213–229

    CAS  Google Scholar 

  8. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

    CAS  PubMed  Google Scholar 

  9. Takemasa C, Chino T, Ishige R, Ando S (2019) Anisotropic photoconductivity of aromatic and semi-aliphatic polyimide films: Effects of charge transfer, molecular orientation, and polymer chain packing. Polymer 180:121713

    CAS  Google Scholar 

  10. Kabasawa A, Saito J, Yano H, Miyatake K, Uchida H, Watanabe M (2009) Durability of a novel sulfonated polyimide membrane in polymer electrolyte fuel cell operation. Electrochim Acta 54:1076–1082

    CAS  Google Scholar 

  11. Aoki M, Uchida H, Watanabe M (2005) Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem Commun 7:1434–1438

    CAS  Google Scholar 

  12. Aoki M, Uchida H, Watanabe M (2006) Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem Commun 8:1509–1513

    CAS  Google Scholar 

  13. Miyatake K, Watanabe M (2005) Recent progress in proton conducting membranes for PEFCs. Electrochem 73:12–19

    CAS  Google Scholar 

  14. Akbarian-Feizi L, Mehdipour-Ataei S, Yeganeh H (2010) Survey of sulfonated polyimide membrane as a good candidate for nafion substitution in fuel cell. Int J Hydrog Energy 35:9385–9397

    CAS  Google Scholar 

  15. Miyatake K, Asano N, Watanabe M (2003) Synthesis and properties of novel sulfonated polyimides containing 1,5-naphthylene moieties. J Polym Sci A Polym Chem 41:3901–3907

    CAS  Google Scholar 

  16. Yamazaki K, Wang G, Tanaka M, Kawakami H (2012) Sulfonated block-graft copolyimide for high proton conductive and low gas permeable polymer electrolyte membrane. J Power Sources 216:387–394

    CAS  Google Scholar 

  17. Kins CF, Sengupta E, Kaltbeitzel A, Wagner M, Lieberwirth I, Spiess HW, Hansen MR (2014) Morphological anisotropy and proton conduction in multiblock copolyimide electrolyte membranes. Macromolecules 47:2645–2658

    CAS  Google Scholar 

  18. Sheng L, Higashihara T, Ueda M, Hayakawa T (2014) Poly(arylene ether ether nitrile)s containing flexible alkylsulfonated side chains for polymer electrolyte membranes. J Polym Sci A Polym Chem 52:21–29

    CAS  Google Scholar 

  19. Molavian MR, Abdolmaleki A, Eskandari K (2016) Theoretical investigation of proton-transfer in different membranes for PEMFC applications in low humidity conditions. Comput Mater Sci 122:126–138

    CAS  Google Scholar 

  20. Miyake J, Mochizuki T, Miyatake K (2015) Effect of the hydrophilic component in aromatic ionomers: simple structure provides improved properties as fuel cell membranes. ACS Macro Lett 4:750–754

    CAS  Google Scholar 

  21. Lee S, Ann J, Lee H, Kim J-H, Kim C-S, Yang T-H, Bae B (2015) Synthesis and characterization of crosslink-free highly sulfonated multi-block poly(arylene ether sulfone) multi-block membranes for fuel cells. J Mater Chem A 3:1833–1836

    CAS  Google Scholar 

  22. Jawalkar SS, Nataraj SK, Raghu AV, Aminabhavi TM (2008) Molecular dynamics simulations on the blends of poly(vinyl pyrrolidone) and poly(bisphenol-A-ether sulfone). J Appl Polym Sci 108:3572–3576

    CAS  Google Scholar 

  23. Raghu AV, Gadaginamath GS, Jawalkar SS, Halligudi SB, Aminabhavi TM (2006) Synthesis, characterization, and molecular modeling studies of novel polyurethanes based on 2,2′-[ethane-1,2-diylbis(nitrilomethylylidene)]diphenol and 2,2′-[hexane-1,6-diylbis(nitrilomethylylidene)] diphenol hard segments. J Polym Sci A Polym Chem 44:6032–6046

    CAS  Google Scholar 

  24. Willcott MR (2009) MestRe Nova. J Am Chem Soc 131:13180–13180

    CAS  Google Scholar 

  25. Rottreau TJ, Parkes GE, Schirru M, Harries JL, Granollers Mesa M, Topham PD, Evans R (2019) NMR cryoporometry of polymers: Cross-linking, porosity and the importance of probe liquid. Colloid Surf A Physicochem Eng Asp 575:256–263

    CAS  Google Scholar 

  26. Li J, Yuan X, Liu S, He Z, Zhou Z, Li A (2017) A low-cost and high-performance sulfonated polyimide proton-conductive membrane for vanadium redox flow/static batteries. ACS Appl Mater Interfaces 9:32643–32651

    CAS  PubMed  Google Scholar 

  27. Xia Y, Liu B, Wang Y (2019) Effects of covalent bond interactions on properties of polyimide grafting sulfonated polyvinyl alcohol proton exchange membrane for vanadium redox flow battery applications. J Power Sources 433:126680

    CAS  Google Scholar 

  28. Raghu AV, Gadaginamath GS, Jeong HM, Mathew NT, Halligudi SB, Aminabhavi TM (2009) Synthesis and characterization of novel Schiff base polyurethanes. J Appl Polym Sci 113:2747–2754

    CAS  Google Scholar 

  29. Raghu AV, Jeong HM (2008) Synthesis, characterization of novel dihydrazide containing polyurethanes based on N1, N2-bis[(4-hydroxyphenyl)methylene]ethanedihydrazide and various diisocyanates. J Appl Polym Sci 107:3401–3407

    CAS  Google Scholar 

  30. Ali N, Ali F, Khan S, Sheikh ZA, Said A, Nawaz Z, Ihsanullah I, Bilal M (2021) Novel sulfonated polyimide-nafion nanocomposite membranes: Fabrication, morphology and physiochemical investigations for fuel cell applications. J Mol Struct 1231:129940

    CAS  Google Scholar 

  31. Yao Z, Zhang Z, Hu M, Hou J, Wu L, Xu T (2018) Perylene-based sulfonated aliphatic polyimides for fuel cell applications: Performance enhancement by stacking of polymer chains. J Membr Sci 547:43–50

    CAS  Google Scholar 

  32. Wang L, Yu L, Mu D, Yu L, Wang L, Xi J (2018) Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries. J Membr Sci 552:167–176

    CAS  Google Scholar 

  33. Zhao X, Zhao K, Sun P (2020) A method to describe energy changes in UV–vis absorbance spectra during the aggregation process of conjugated polymer solutions. Chem Phys Lett 739:136932

    CAS  Google Scholar 

  34. Zhang M, Wang G, Li A, Wei X, Li F, Zhang J, Chen J, Wang R (2021) Novel sulfonated polyimide membrane blended with flexible poly[bis(4-methylphenoxy) phosphazene] chains for all vanadium redox flow battery. J Membr Sci 619:118800

    CAS  Google Scholar 

  35. Perrot C, Gonon L, Marestin C, Gebel G (2011) Hydrolytic degradation of sulfonated polyimide membranes for fuel cells. J Membr Sci 379:207–214

    CAS  Google Scholar 

  36. Jiang DD, Yao Q, McKinney MA, Wilkie CA (1999) TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym Degradat Stab 63:423–434

    CAS  Google Scholar 

  37. Cao R, Naya S, Artiaga R, Garcı́a A, Varela A, (2004) Logistic approach to polymer degradation in dynamic TGA. Polym Degradat Stab 85:667–674

    CAS  Google Scholar 

  38. Zhang D, Seong JG, Lee WH, Ando S, Wan Y, Lee YM, Zhuang Y (2020) Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. Polymer 191:122263

    CAS  Google Scholar 

  39. Abu-Orabi FM, Kailani MH, Sweileh BA, Mustafa MY, Al-Hussein M (2017) Sulfonated polyimide copolymers based on 4,4′-diaminostilbene-2,2′-disulfonic acid and 3,5,3′,5′-tetramethylbenzidine with enhanced solubility. Polym Bull 74:895–909

    CAS  Google Scholar 

  40. Huang Y-C, Tai R-H, Lee H-F, Wang P-H, Gopal R, Lee C-C, Chang M-Y, Huang W-Y (2016) Synthesis of highly sulfonated poly(arylene ether) containing multiphenyl for proton exchange membrane materials. Int J Polym Sci 2016:6545362

    Google Scholar 

  41. Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M (2001) Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373

    CAS  Google Scholar 

  42. Berto D, Rampazzo F, Gion C, Noventa S, Ronchi F, Traldi U, Giorgi G, Cicero AM, Giovanardi O (2017) Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere 176:47–56

    CAS  PubMed  Google Scholar 

  43. Soepangkat BOP, Norcahyo R, Effendi MK, Pramujati B (2020) Multi-response optimization of carbon fiber reinforced polymer (CFRP) drilling using back propagation neural network-particle swarm optimization (BPNN-PSO). Eng Sci Technol 23:700–713

    Google Scholar 

  44. Yang W-J, Wang H-Y, Lee D-H, Kim Y-B (2015) Channel geometry optimization of a polymer electrolyte membrane fuel cell using genetic algorithm. Appl Energy 146:1–10

    CAS  Google Scholar 

  45. CagriAta A, Yildiko Ü, Cakmak İ, Tanriverdi AA (2021) Synthesis and characterization of polyvinyl alcohol-g-polystyrene copolymers via MADIX polymerization technique. Iran Polym J 30:885–895

    CAS  Google Scholar 

  46. Priya MK, Revathi BK, Renuka V, Sathya S, Asirvatham PS (2019) Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Mater Today Proc 8:37–46

    CAS  Google Scholar 

  47. Erdoğan M (2021) A novel dibenzosuberenone bridged D-A-π-A type dye: Photophysical and photovoltaic investigations. J Mol Struct 1232:130056

    Google Scholar 

  48. Yİldİko Ü, Ata AÇ, Tanriverdİ AA, Çakmak İ (2021) Investigation of novel diethanolamine dithiocarbamate agent for RAFT polymerization: DFT computational study of the oligomer molecules. Bull Mater Sci 44:186

    Google Scholar 

  49. Erdoğan M, Serdaroğlu G (2021) New Hybrid (E)-4-((pyren-1-ylmethylene)amino)-N-(thiazol-2-yl)benzenesulfonamide as a Potential Drug Candidate: Spectroscopy, TD-DFT, NBO, FMO, and MEP Studies**. ChemistrySelect 6:9369–9381

    Google Scholar 

  50. Yildiko U, Ata AC, Cakmak İ, Tanriverdi AA (2021) The polyethylene glycol xanthate-mediated synthesis of block copolymers via novel MADIX agents containing azo initiator: Effect of PEG chain length on molecular properties. Polym Bull. https://doi.org/10.1007/s00289-021-03813-8

    Article  Google Scholar 

  51. Pramanik S, Dey T, Mukherjee AK (2019) Five benzoic acid derivatives: Crystallographic study using X-ray powder diffraction, electronic structure and molecular electrostatic potential calculation. J Mol Struct 1175:185–194

    CAS  Google Scholar 

  52. Al Sabahi A, Al Busafi SN, Suliman FO, Al Kindy SM (2020) Photophysical and theoretical studies on the solvatochromic effects and dipole moments evaluation of substituted 1-phenyl-3-naphthyl-5- (4-ethyl benzoate)-2-pyrazoline. J Mol Liq 307:112967

    CAS  Google Scholar 

  53. Safia H, Ismahan L, Abdelkrim G, Mouna C, Leila N, Fatiha M (2019) Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. J Mol Liq 280:218–229

    CAS  Google Scholar 

  54. Abdolmaleki A, Eskandari K, Molavian MR (2016) Sulfonated or phosphonated membranes? DFT investigation of proton exchange in poly(oxadiazole) membranes. Polymer 87:181–193

    CAS  Google Scholar 

  55. Yildiko Ü, Türkan F, Tanriverdi AA, Ata AC, Atalar MN, Cakmak İ (2021) Synthesis, enzymes inhibitory properties and characterization of 2- (bis (4-aminophenyl) methyl) butan-1-ol compound: Quantum simulations, and in-silico molecular docking studies. J Indian Chem Soc 98:100206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Yildiko.

Ethics declarations

Conflicts of interests/Competing interests

We declare that there is no a conflict of interest with any person, institute, company, etc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiko, U., Tanriverdi, A.A. Synthesis and characterization of pyromellitic dianhydride based sulfonated polyimide: Survey of structure properties with DFT and QTAIM. J Polym Res 29, 19 (2022). https://doi.org/10.1007/s10965-021-02872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02872-9

Keywords

Navigation