Skip to main content
Log in

Double cross-linked pectin beads stable in physiological environment as potential support for biomedical applications

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Calcium-pectin beads are largely used for biomedical applications, however, the main drawback is their rapid disintegration in the presence of chelating and non-chelating ions from body fluids. Therefore, the principal goal of this work is to produce stable pectin beads by successive ionic and covalent cross-linking and to test their stability in simulated physiological conditions. For this purpose, native pectin was first de-esterified (DEP) to result a maximum amount of carboxylic groups, then a fraction of the DEP was oxidized with NaIO4 (OXP) to introduce aldehyde groups susceptible to covalent cross-linking. Finally, the de-methylated and de-methylated/oxidized pectin were mixed and transformed into beads by double cross-linking: ionic with calcium ions and covalent with adipic acid dihydrazide (ADH). The gelling properties, sphericity and shape as well as the morphology and the stability of the beads in different media were investigated. Finally, beads were tested for their capacity to encapsulate and release drug molecule. Therefore, microcapsules were loaded with FITC-dextran, a standard high molecular weight model drug molecule, with high encapsulation efficiency. A remarkable delay in FITC-dextran release was observed for DEP/OXP beads compared to DEP particles. The transport mechanism of solvent and FITC-dextran in/from the DEP/OXP beads was determined as a Fickian diffusion-driven. The viability tests proved that both simple and double cross-linked microcapsules are cytocompatible for the HEK-293 cells at pectin concentrations up to 5.5 mg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data required will be available on demand.

References

  1. Celus M, Kyomugasho C, Van Loey AM, Grauwet T, Hendrickx ME (2018) Influence of pectin structural properties on interactions with divalent cations and its associated functionalities. Compr Rev Food Sci Food Saf 17:1576–1594. https://doi.org/10.1111/1541-4337.12394

    Article  CAS  PubMed  Google Scholar 

  2. Chen D, Chang L, Zhou Z, Bo Y, Wang Y, He Y, Qin J (2021) Pectin-based self-healing hydrogel with NaHCO3 degradability for drug loading and release. J Polym Res 28:59. https://doi.org/10.1007/s10965-021-02430-3

    Article  CAS  Google Scholar 

  3. Sande SA (2005) Pectin-based oral drug delivery to the colon. Expert Opin Drug Deliv 2:441–450. https://doi.org/10.1517/17425247.2.3.441

    Article  CAS  PubMed  Google Scholar 

  4. Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Biores Technol 9:1896–1903. https://doi.org/10.1016/j.biortech.2007.03.060

    Article  CAS  Google Scholar 

  5. Eliaz I, Hotchkiss AT, Fishman ML, Rode D (2006) The effect of modified citrus pectin on urinary excretion of toxic elements. Phytoter Res 20:859–864. https://doi.org/10.1002/ptr.1953

    Article  CAS  Google Scholar 

  6. Gant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett 32:195–198. https://doi.org/10.1016/0014-5793(73)80770-7

    Article  Google Scholar 

  7. Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromol 2:1089–1096. https://doi.org/10.1021/bm010008g

    Article  CAS  Google Scholar 

  8. Assifaoui A, Lerbret A, Uyen HTD, Neiers F, Chambin O, Loupiac C, Cousin F (2015) Structural behaviour differences in low methoxy pectin solutions in the presence of divalent cations (Ca2+ and Zn2+): a process driven by the binding mechanism of the cation with the galacturonate unit. Soft Matter 11:551–560. https://doi.org/10.1039/C4SM01839G

    Article  CAS  PubMed  Google Scholar 

  9. Jung J, Arnold RD, Wicker L (2013) Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloid Surface B 104:116–121. https://doi.org/10.1016/j.colsurfb.2012.11.042

    Article  CAS  Google Scholar 

  10. Babaladimath G, Badalamoole V (2018) Pectin-graft-poly(2-acrylamido-2-methyl-1-propane sulfonic acid) silver nanocomposite hydrogel beads: evaluation as matrix material for sustained release formulations of ketoprofen and antibacterial assay. J Polym Res 25:202. https://doi.org/10.1007/s10965-018-1592-5

    Article  CAS  Google Scholar 

  11. Jantrawut P, Chambin O, Ruksiriwanich W (2015) Scavenging activity of rutin encapsulated in low methoxyl pectin beads. Cell Chem Technol 49:51–54

    CAS  Google Scholar 

  12. Atara SA, Soniwala M (2018) Formulation and evaluation of pectin-calcium chloride beads of azathioprine for colon targeted drug delivery system. Int J Pharm Pharm Sci 10:172–177. https://doi.org/10.22159/ijpps.2018v10i1.23175

  13. Berger R, Ruhlemann I (1988) Stable ionotropic gel for immobilization using high molecular weight pectic acid. Acta Biotechnol 8:401–405. https://doi.org/10.1002/abio.370080503

    Article  CAS  Google Scholar 

  14. Li M, Jin Y, Wang Y, Meng L, Zhang N, Sun Y, Hao J, Fu Q (2019) Preparation of Bifidobacterium breve encapsulated in low mehoxyl pectin beds and its effect on yogurt quality. J Dairy Sci 102:1–12. https://doi.org/10.3168/jds.2018-15597

    Article  CAS  Google Scholar 

  15. Chang KLB, Lin J (2000) Swelling behavior and the release of protein from chitosan-pectin composite particles. Carbohydr Polym 43:163–169. https://doi.org/10.1016/S0144-8617(00)00145-4

    Article  CAS  Google Scholar 

  16. Kim TH, Park YH, Kim KJ, Cho CS (2003) Release of albumin from chitosan-coated pectin beads in vitro. Int J Pharm 250:371–383. https://doi.org/10.1016/S0378-5173(02)00553-7

    Article  CAS  PubMed  Google Scholar 

  17. Bourgeois S, Laham A, Besnard M, Andremont A, Fattal E (2005) In vitro and in-vivo evaluation of pectin beads for the colon delivery of β-lactamases. J Drug Target 13:277–284. https://doi.org/10.1080/10611860500206583

    Article  CAS  PubMed  Google Scholar 

  18. de Souza JRR, de Carvalho JIX, Trevisan MTS, de Paula RCM, Ricardo NMPS, Feitosa JPA (2009) Chitosan-coated pectin beads: Characterization and in vitro release of mangiferin. Food Hydrocoll 23:2278–2286. https://doi.org/10.1016/j.foodhyd.2009.06.004

    Article  CAS  Google Scholar 

  19. Cabrera JC, Cambier P, van Cutsem P (2011) Drug encapsulation in pectin hydrogel beads- a systematic study of simulated digestion media. Int J Pharm Pharm Sci 3:292–299

    CAS  Google Scholar 

  20. Liu LS, Fishman ML, Hicks KB, Kende M, Ruthel G (2006) Pectin/zein beads for potential colon-specific drug delivery: synthesys and in vitro evaluation. Drug Deliv 13:417–423. https://doi.org/10.1080/10717540500394935

    Article  CAS  PubMed  Google Scholar 

  21. Das S, Ng K (2010) Impact of glutaraldehyde on in vivo colon-specific release of resveratrol from biodegradable pectin-based formulation. J Pharm Sci 99:4903–4916. https://doi.org/10.1002/jps.22212

    Article  CAS  PubMed  Google Scholar 

  22. Das S, Ng K, Ho PC (2011) Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: In vitro and in vivo evaluations. J Drug Traget 19:446–457. https://doi.org/10.3109/1061186X.2010.504272

    Article  CAS  Google Scholar 

  23. Vityazev FV, Khramova DS, Saveliev NY, Ipatova EA, Burkov AA, Beloserov VS, Belyi VA, Kononov LO, Martinson EA, Litvinets SG, Markov PA, Popov SV (2020) Pectin–glycerol gel beads: preparation, characterization and swelling behaviour. Carbohydr Polym 238(15). https://doi.org/10.1016/j.carbpol.2020.116166

  24. Vityazev FV, Fedyuneva MI, Golovchenko VV, Patova OA, Ipatova EU, Durnev EA, Martinson EA, Litvinets SG (2017) Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract. Carbohydr Polym 157:9–20. https://doi.org/10.1016/j.carbpol.2016.09.048

    Article  CAS  PubMed  Google Scholar 

  25. Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345:1264–1271. https://doi.org/10.1016/j.carres.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  26. Gupta B, Tummalapalli M, Deopura BL, Alam MS (2013) Functioanlization of pectin by periodate oxidation. Carbohydr Polym 98:1160–1165. https://doi.org/10.1016/j.carbpol.2013.06.069

    Article  CAS  PubMed  Google Scholar 

  27. Chetouani A, Elkolli M, Bounekhel M, Benachour D (2014) Synthesis and properties of novel hydrogels from oxidized pectin crosslinked gelatin for biomedical applications. Polym Bull 71:2303–2316. https://doi.org/10.1007/s00289-014-1189-z

  28. Munarin F, Petrini P, Tanzi MC, Barbosa MA, Granja PL (2012) Biofunctional chemically modified pectin for cell delivery. Soft Matter 8:4731–4739. https://doi.org/10.1039/C2SM07260B

    Article  Google Scholar 

  29. Chetouani A, Follain N, Marais S, Rihouey C, Elkolli M, Bounekhel M, Benachour D, LeCerf D (2017) Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int J Biol Macromol 97:348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  30. Chen S, Cui S, Zhang H, Pei X, Hu J, Zhou YZ, Liu Y (2018) Crosslinked pectin nanofibers with enhanced cell adhesion. Biomacromol 19:490–498. https://doi.org/10.1021/acs.biomac.7b01605

    Article  CAS  PubMed  Google Scholar 

  31. Tummalapali M, Gupta B (2015) A UV-Vis spectrophotometric method for the estimation of aldehyde groups in periodate-oxidized polysaccharides using 2,4-dinitrophenyl hydrazine. J Carbohydr Chem 34:338–348. https://doi.org/10.1080/07328303.2015.1068793

    Article  CAS  Google Scholar 

  32. Morris GA, Foster TJ, Harding SE (2002) A hydrodynamic study of the depolymerisation of a high methoxy pectin at elevated temperatures. Carbohydr Polym 48:361–367. https://doi.org/10.1016/S0144-8617(01)00270-3

    Article  CAS  Google Scholar 

  33. Morris GA, Castile J, Smith A, Adams GG, Harding SE (2010) The effect of different storage temperatures on the physical properties of pectin solutions and gels. Polym Degrad Stabil 95:2670–3267. https://doi.org/10.1016/j.polymdegradstab.2010.07.013

    Article  CAS  Google Scholar 

  34. Bruneel D, Schacht E (1993) Chemical modification of pullulan: 1. Periodate oxidation Polymer 34:2628–2632. https://doi.org/10.1016/0032-3861(93)90600-F

    Article  CAS  Google Scholar 

  35. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable device. J Controlled Release 5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  36. Bruschi ML (2015) Mathematical models of drug release In: Bruschi ML (ed) Strategies to modify the drug release from pharmaceutical systems, 1st edn. Woodhead Publishing, Cambridge, pp 63–86. https://doi.org/10.1016/C2014-0-02342-8

  37. Padival RA, Ranganna S, Manjrekar SP (1979) Low methoxyl pectin from lime peel. J Fd Technol 14:333–343. https://doi.org/10.1111/j.1365-2621.1979.tb00878.x

    Article  CAS  Google Scholar 

  38. Rosenbohm C, Lundt I, Christensen TMIE, Young NWG (2003) Chemically methylated and reduced pectins: preparation, characterisation by 1H NMR spectroscopy, enzymatic degradation, and gelling properties. Carbohydr Res 338:637–649. https://doi.org/10.1016/S0008-6215(02)00440-8

    Article  CAS  PubMed  Google Scholar 

  39. Filippov MP, Kohn R (1975) Determination of the esterification degree of carboxyl groups of pectin with methanol by means of infrared spectroscopy. Chem Zvesti 29(1):88–91

    CAS  Google Scholar 

  40. Fellah A, Anjukandi P, Waterland MR, Williams MAK (2009) Determining the degree of methylesterification of pectin by ATR/FT-IR: Methodology optimisation and comparison with theoretical calculations. Carbohydr Polym 78:847–853. https://doi.org/10.1016/j.carbpol.2009.07.003

    Article  CAS  Google Scholar 

  41. Synystsya A, Copikova J, Matejka P, Machovic V (2003) Fourrier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106. https://doi.org/10.1016/S0144-8617(03)00158-9

    Article  CAS  Google Scholar 

  42. Baum A, Dominiak M, Vidal-Melgosa S, Willats WGT, Søndergaard KM, Hansen PW et al (2017) Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis. Food Bioproc Tech 10:143–154. https://doi.org/10.1007/s11947-016-1802-2

    Article  CAS  Google Scholar 

  43. Huamani-Palomino RG, Cordova BM, Pichilingue LER, Venancio T, Valderrama AC (2021) Functionalization of an Alginate-based material by oxidation and reductive amination. Polymers 13:255–269. https://doi.org/10.3390/polym13020255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ayarza J, Coello Y, Nakamatsu J (2017) SEM-EDS study of ionically crosslinked alginate and alginic acid bead formation. Int J Polym Anal Charact 22:1–10. https://doi.org/10.1080/1023666X.2016.1219834

    Article  CAS  Google Scholar 

  45. Thu B, Gåserød O, Paus D, Mikkelsen A, Skjak-Braek G, Toffanin R, Vittur F, Rizzo R (2000) Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging, and mathematical modeling. Biopolymers 53:60–77. https://doi.org/10.1002/(SICI)1097-0282(200001)53:1%3c60::AID-BIP6%3e3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  46. Pretsch E, Bühlmann P, Badertscher M (2010) Spektroskopische Daten zur Strukturaufklarung organischer Verbindungen. Springer, Heidelberg

    Book  Google Scholar 

  47. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS (2011) Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol. Bull Chem Soc Ethiop 25:407–417. https://doi.org/10.4314/bcse.v25i3.68593

    Article  CAS  Google Scholar 

  48. Pawar A, Gadhe A, Venkatachalam P, Sher P, Mohadik K (2008) Effect of core and surface cross-linking on the entrapment of metronidazole in pectin beads. Acta Pharm 58:78–85. https://doi.org/10.2478/v10007-007-0046-0

    Article  PubMed  Google Scholar 

  49. Rebitski EP, Darder M, Carraro R, Aranda P, Ruiz-Hitzky E (2020) Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. New J Chem 44:10102–10110. https://doi.org/10.1039/C9NJ06433H

    Article  CAS  Google Scholar 

  50. Remunán-López C, Bodmeier R (1997) Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J Control Rel 44:215–225. https://doi.org/10.1016/S0168-3659(96)01525-8

    Article  Google Scholar 

  51. Agnihotri SA, Jawalkar SS, Aminabhavi TM (2006) Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size and drug release. Eur J Pharm Biopharm 63:249–261. https://doi.org/10.1016/j.ejpb.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  52. Siepmann J, Siepmann F (2008) Mathematical modeling of drug delivery. Int J Pharm 364:328–343. https://doi.org/10.1016/j.ijpharm.2008.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCDI-UEFISCDI, project number PN-III-P1-1.2.-PCCDI-2017–0697/contract nr. 13PCCDI/2018 within PNCDI III (INTERA) and by the European Social Fund for Regional Development, Competitiveness Operational Programme Axis 1 – Project “Petru Poni” Institute of Macromolecular Chemistry-Interdisciplinary Pol for Smart Specialization through Research and Innovation and Technology Transfer in Bio(nano)polymeric Materials and (Eco)Technology”, InoMatPol (ID P_36_570, Contract 142/10.10.2016, cod MySMIS: 107464).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Marieta Constantin and Gheorghe Fundueanu; Methodology: Irina Popescu and Marieta Constantin; Investigation: Mihail Lupei, Irina Popescu, Geanina Voicu, and Anca Irina Prisacaru; Writing – original draft preparation: Irina Popescu and Marieta Constantin; Writing—review and editing: Gheorghe Fundueanu and Manuela Calin; Supervision: Gheorghe Fundueanu.

Corresponding author

Correspondence to Gheorghe Fundueanu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, I., Lupei, M., Constantin, M. et al. Double cross-linked pectin beads stable in physiological environment as potential support for biomedical applications. J Polym Res 28, 424 (2021). https://doi.org/10.1007/s10965-021-02779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02779-5

Keywords

Navigation