Skip to main content

Advertisement

Log in

Enhanced thermal conductivity and antistatic property of energy-saving tyres

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Tyres made of natural rubber (NR) filled with silica (SiO2) are usually called energy-saving tyres with excellent resistance to wet slip and low friction resistance. It’s noted that the tyres tend to aging and produce static electricity caused by poor electrical and thermal conductivity of NR and SiO2. Therefore, it’s urgent to prepare NR/SiO2 composites with enhanced thermal conductivity and antistatic performance. Here, a simple, efficient, and green method is applied to obtain graphene nanosheets (GNs) compatible well with NR, and the influence of GNs dosage on the properties of SiO2/NR composites are explored. The results show that GNs are helpful to improve mechanical properties and solvent resistance of SiO2/NR composites. Outstandingly, the thermal conductivity and electrical conductivity of 2.0wt%GNs/SiO2/NR composites are increased by 60% and 5 orders of magnitude compared with SiO2/NR composites, reaching to 0.29W·m-1·K-1 and 4.2×10-8 S/m respectively. It’s expected that GNs can become a candidate for improving thermal conductivity and antistatic properties of energy-saving tyres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tabsan N, Wirasate S, Suchiva K (2010) Abrasion behavior of layered silicate reinforced natural rubber. Wear 269(5–6):394–404

    Article  CAS  Google Scholar 

  2. Liu C, Shao Y, Jia D (2008) Chemically modified starch reinforced natural rubber composites. Polymer 49(8):2176–2181

    Article  CAS  Google Scholar 

  3. Omnès B, Thuillier S, Pilvin P, Grohens Y, Gillet S (2008) Effective properties of carbon black filled natural rubber: Experiments and modeling. Compos - A: Appl Sci Manuf 39(7):1141–1149

    Article  Google Scholar 

  4. Bockstal L, Berchem T, Schmetz Q, Richel A (2019) Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review. J Clean Prod 236:117574

  5. Fragiadakis D, Bokobza L, Pissis P (2011) Dynamics near the filler surface in natural rubber-silica nanocomposites. Polymer 52(14):3175–3182

    Article  CAS  Google Scholar 

  6. Payne AR (1962) The dynamic properties of carbon black‐loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(21):368-372

  7. Ruiz MR, Cabreira PLS, Budemberg ER, Reis EAPd, Bellucci FS, Job AE (2016) Chemical evaluation of composites natural rubber/carbon black/leather tannery projected to antistatic flooring. J Appl Polym Sci 133(27):43618

    Article  Google Scholar 

  8. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54(19):5087–5103

    Article  CAS  Google Scholar 

  9. Li J, Yan Q, Zhang X, Zhang J, Cai Z (2019) Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials. Polymers 11(4):623

    Article  Google Scholar 

  10. Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55(1):201–210

    Article  CAS  Google Scholar 

  11. Mcallister MJ, Li JL, Adamson DH (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    Article  CAS  Google Scholar 

  12. Zhao S, Xie S, Liu X, Shao X, Zhao Z, Xin Z (2018) Covalent hybrid of graphene and silicon dioxide and reinforcing effect in rubber composites. J Polym Res 25(10):255

    Google Scholar 

  13. Yang B, Zhang S-H, Zou Y-F, Ma W-S, Huang G-J, Li M-D (2018) Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. Chin J Polym Sci 37(2):189–196

    Article  Google Scholar 

  14. Charoenchai M, Tangbunsuk S, Keawwattana W (2020) Silica-graphene oxide nanohybrids as reinforcing filler for natural rubber. J Polym Res 27(8):230

    CAS  Google Scholar 

  15. Ye X, Guo J, Zeng X (2017) Antistatic effects and mechanism of ionic liquids for methyl vinyl silicone rubber. J Appl Polym Sci 134(32):45180

    Article  Google Scholar 

  16. Frasca D, Schulze D, Wachtendorf V, Huth C, Schartel B (2015) Multifunctional multilayer graphene/elastomer nanocomposites. Europ Polym J 71:99–113

    Article  CAS  Google Scholar 

  17. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  CAS  Google Scholar 

  18. Singh VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR (2012) Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6):2202–2208

    Article  CAS  Google Scholar 

  19. Long Y, Wang JF, Lv YN, Tao CA, Xia L, Zhu H (2012) Preparation and Characterization of Graphene by the Oxidation Reduction Method. Adv Mat Res 554-556:624-627

  20. Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479

    Article  CAS  Google Scholar 

  21. Punith Kumar MK, Nidhi M, Srivastava C (2015) Electrochemical exfoliation of graphite to produce graphene using tetrasodium pyrophosphate. RSC Advances 5(32):24846–24852

    Article  CAS  Google Scholar 

  22. Li J, Zhao X, Wu W, Zhang Z, Xian Y, Lin Y (2020) Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 162:46–55

    Article  CAS  Google Scholar 

  23. Lin Y, Liu S, Peng J, Liu L (2016) The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: A quantitative correlation with the constrained region. Compos - A: Appl Sci Manuf 86:19–30

    Article  CAS  Google Scholar 

  24. Song Y, Yu J, Dai D, Song L, Jiang N (2014) Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber. Mater Des 64:687–693

    Article  CAS  Google Scholar 

  25. Fu W, Wang L (2016) Research on Payne effect of natural rubber reinforced by graft-modified silica. J Appl Polym Sci 133(36):43891

    Article  Google Scholar 

  26. Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos - A: Appl Sci Manuf 70:35–44

    Article  CAS  Google Scholar 

  27. Kang H, Tang Y, Yao L, Yang F, Fang Q, Hui D (2017) Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos B Eng 112:1–7

    Article  Google Scholar 

  28. Aguilar-Bolados H, Brasero J, Lopez-Manchado MA, Yazdani-Pedram M (2014) High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Compos B Eng 67:449–454

    Article  CAS  Google Scholar 

  29. Stanier DC, Patil AJ, Sriwong C, Rahatekar SS, Ciambella J (2014) The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber. Compos Sci Technol 95:59–66

    Article  CAS  Google Scholar 

  30. Papageorgiou DG, Kinloch IA, Young RJ (2015) Graphene/elastomer nanocomposites. Carbon 95:460–484

    Article  CAS  Google Scholar 

  31. Xu X, Hu R, Chen M, Dong J, Xiao B, Wang Q (2020) 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem Eng J 397:125447

  32. Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9(7):2730–2735

    Article  CAS  Google Scholar 

  33. Zhu T, Ertekin E (2016) Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene. Nano Lett 16(8):4763–4772

    Article  CAS  Google Scholar 

  34. Li Y, Xu F, Lin Z, Sun X, Peng Q, Yuan Y (2017) Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications. Nanoscale 9(38):14476–14485

    Article  CAS  Google Scholar 

  35. Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22(21):10464–10468

    CAS  Google Scholar 

  36. Abu-Abdeen M, Elamer I (2010) Mechanical and swelling properties of thermoplastic elastomer blends. Mater Des 31(2):808-815

  37. Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D (2014) Rational Design of Graphene Surface Chemistry for High-Performance Rubber/Graphene Composites. Macromolecules 47(24):8663–8673

    Article  CAS  Google Scholar 

  38. Liu Q, Shi W, Chen Z (2019) Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model. J Appl Polym Sci 137(14)

  39. Dong B, Liu C, Zhang L, Wu Y (2015) Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Adv 5(22):17140–17148

    Article  CAS  Google Scholar 

  40. Rooj S, Das A, Thakur V, Mahaling RN, Bhowmick AK, Heinrich G (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31(4):2151–2156

    Article  CAS  Google Scholar 

  41. Varghese TV, Ajith Kumar H, Anitha S, Ratheesh S, Rajeev RS, Lakshmana Rao V (2013) Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers. Carbon 61:476–486

    Article  CAS  Google Scholar 

  42. Zhong B, Jia Z, Dong H, Luo Y, Jia D, Liu F (2017) One-step approach to reduce and modify graphene oxide via vulcanization accelerator and its application for elastomer reinforcement. Chem Eng J 317:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (51563002), Guizhou Province “100 levels” innovative talent project ([2016]5653), Natural Science Foundation of Guizhou Province (No. 2017[2017], and Research of SBR rubber special materials for low heat generation engineering tire (Qianke Cooperation Support [2018] 2184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengjun Lu or Haosen Fan.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Qin, H., Wang, C. et al. Enhanced thermal conductivity and antistatic property of energy-saving tyres. J Polym Res 28, 420 (2021). https://doi.org/10.1007/s10965-021-02768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02768-8

Keywords

Navigation