Skip to main content
Log in

Synergistically improving mechanical properties and lowering build-up heat in natural rubber tires through nano-zinc oxide on graphene oxide and strong cross-linked interfaces derived from thiol-ene click reaction

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Graphene is widely used as an ideal reinforcing filler for rubber, often facing poor dispersion and interfacial interactions. In this work, the modified graphene oxide (GO) enhanced the curing rate and cross-linking density of rubber by loading chemically reduced zinc oxide (ZnO) nanoparticles and undergoing thiol-ene click reaction, which resulted in rubber composites with low heat build-up and excellent mechanical properties. It not only acted as reinforcing particles, but also played the role of activation and vulcanization. The modified GO particles acted as a bridge enabling the formation of strong interfacial interaction between the GO filler and the NR matrix. In addition, the loading of nano-ZnO reduced the use of traditional ZnO, which contributed to the reduction of environmental pollution. What’s more, the prepared solid tires exhibited low rolling resistance and temperature rise. This was important for high performance and long life of the tire. This strategy provides new insights for the preparation of graphene green tires with low energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lee D, Song SH (2019) A study of silica reinforced rubber composites with eco-friendly processing aids for pneumatic tires. Macromol Res 27:850–856. https://doi.org/10.1007/s13233-019-7125-1

    Article  CAS  Google Scholar 

  2. Liang C, Zhang W, Liu C, He J, Xiang Y, Han M, Tong Z, Liu Y (2023) Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem Eng J 471:144500. https://doi.org/10.1016/j.cej.2023.144500

    Article  CAS  Google Scholar 

  3. Cheng S, Duan X, Zhang Z, An D, Zhao G, Liu Y (2021) Preparation of a natural rubber with high thermal conductivity, low heat generation and strong interfacial interaction by using NS-modified graphene oxide. J Mater Sci 56:4034–4050. https://doi.org/10.1007/s10853-020-05503-8

    Article  ADS  CAS  Google Scholar 

  4. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  CAS  Google Scholar 

  5. Zhang J, Wang Y, Wang Y, Zhang M (2017) Catalytic Activity for Oxygen Reduction Reaction on CoN 2 embedded graphene: a density functional theory study. J Electrochem Soc 164:F1122–F1129. https://doi.org/10.1149/2.1031712jes

    Article  CAS  Google Scholar 

  6. Duan X, Cheng S, Li Z, Liang C, Zhang Z, Zhao G, Liu Y, An D, Sun Z, Wong C (2022) Flexible and environmentally friendly graphene natural rubber composites with high thermal conductivity for thermal management. Compos A Appl Sci Manuf 163:107223. https://doi.org/10.1016/j.compositesa.2022.107223

    Article  CAS  Google Scholar 

  7. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  8. Chen S, Bai L, Wang X, Li H, Xu BB, Algadi H, Guo Z (2023) Effect of hydrophobic nano-silica/β-nucleating agent on the crystallization behavior and mechanical properties of polypropylene random copolymers. Polym Int pi.6575. https://doi.org/10.1002/pi.6575

  9. Dash MK, Jain A, Dhruw L, Giri S, Guo Z, Roymahapatra G (2023) Pyridine-M2+ [M = Mg, Ca]: A promising organometallic system for potential hydrogen storage: in silico study. J Indian Chem Soc 100:101048. https://doi.org/10.1016/j.jics.2023.101048

    Article  CAS  Google Scholar 

  10. Zhang G, Tian C, Chu H, Liu J, Guo B, Zhang L (2023) A facile strategy to achieve vitrimer-like elastomer composites with lignin as a renewable bio-filler toward excellent reinforcement and recyclability. J Mater Chem A https://doi.org/10.1039/D3TA05205B

  11. He J, Han M, Wen K, Liu C, Zhang W, Liu Y, Su X, Zhang C, Liang C (2023) Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos Sci Technol 231:109799. https://doi.org/10.1016/j.compscitech.2022.109799

    Article  CAS  Google Scholar 

  12. Liu Y, Chen W, Jiang D (2022) Review on heat generation of rubber composites. Polymers 15:2. https://doi.org/10.3390/polym15010002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wen Y, Yin Q, Jia H, Yin B, Zhang X, Liu P, Wang J, Ji Q, Xu Z (2017) Tailoring rubber-filler interfacial interaction and multifunctional rubber nanocomposites by usage of graphene oxide with different oxidation degrees. Compos B Eng 124:250–259. https://doi.org/10.1016/j.compositesb.2017.05.006

    Article  CAS  Google Scholar 

  14. Coran AY (1965) Vulcanization. Part VII. Kinetics of sulfur vulcanization of natural rubber in presence of delayed-action accelerators. Rubber Chem Technol 38:1–14. https://doi.org/10.5254/1.3535628

  15. Sreethu TK, Das M, Parathodika AR, Bhattacharya AB, Naskar K (2023) Understanding the role of ZnO as activator in SBR vulcanizates: performance evaluation with active, nano, and functionalized ZnO. J Appl Polym Sci 140:e53257. https://doi.org/10.1002/app.53257

  16. Qin X, Xu H, Zhang G, Wang J, Wang Z, Zhao Y, Wang Z, Tan T, Bockstaller MR, Zhang L, Matyjaszewski K (2020) Enhancing the performance of rubber with nano ZnO as activators. ACS Appl Mater Interfaces 12:48007–48015. https://doi.org/10.1021/acsami.0c15114

    Article  CAS  PubMed  Google Scholar 

  17. Luo Y, Zhang H, Duan H, Du P, Cao J (2023) A novel method to improve anti-aging properties of SBS modified bitumen by zinc oxide/expanded vermiculite composite: influence of zinc oxide particle loadings. Constr Build Mater 408:133790. https://doi.org/10.1016/j.conbuildmat.2023.133790

    Article  CAS  Google Scholar 

  18. Suntako R (2018) Effect of synthesized ZnO nanoparticles on thermal conductivity and mechanical properties of natural rubber. IOP Conf Ser Mater Sci Eng 284:012017. https://doi.org/10.1088/1757-899X/284/1/012017

  19. Das A, Wang D-Y, Leuteritz A, Subramaniam K, Greenwell HC, Wagenknecht U, Heinrich G (2011) Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide filler. J Mater Chem 21:7194. https://doi.org/10.1039/c0jm03784b

    Article  CAS  Google Scholar 

  20. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99. https://doi.org/10.1002/etc.708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mostoni M (2019) Credico. D’Arienzo, Scotti, Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process. Catalysts 9:664. https://doi.org/10.3390/catal9080664

  22. Xu Z, Zheng L, Wen S, Liu L (2019) Graphene oxide-supported zinc oxide nanoparticles for chloroprene rubber with improved crosslinking network and mechanical properties. Compos A Appl Sci Manuf 124:105492. https://doi.org/10.1016/j.compositesa.2019.105492

    Article  CAS  Google Scholar 

  23. Wang Z, Hou Z, Liu X, Gu Z, Li H, Chen Q (2023) Preparation of zinc oxide with core–shell structure and its application in rubber products. Polymers 15:2353. https://doi.org/10.3390/polym15102353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakaki Y, Usami R, Tohsan A, Junkong P, Ikeda Y (2018) Dominant formation of disulfidic linkages in the sulfur cross-linking reaction of isoprene rubber by using zinc stearate as an activator. RSC Adv 8:10727–10734. https://doi.org/10.1039/C8RA00544C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heideman G, Noordermeer JWM, Datta RN, Van Baarle B (2005) Effect of zinc complexes as activator for sulfur vulcanization in various rubbers. Rubber Chem Technol 78:245–257. https://doi.org/10.5254/1.3547881

    Article  CAS  Google Scholar 

  26. Alam MN, Kumar V, Park SS (2022) Advances in rubber compounds using ZnO and MgO as Co-cure activators. Polymers 14:5289. https://doi.org/10.3390/polym14235289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thaptong P, Boonbumrung A, Jittham P, Sae-oui P (2019) Potential use of a novel composite zinc oxide as eco-friendly activator in Tire tread compound. J Polym Res 26:226. https://doi.org/10.1007/s10965-019-1895-1

    Article  CAS  Google Scholar 

  28. Lei Z, Wu Y, Tang L, Chen J (2022) In situ growth of ZnO on carbon nanospheres and its properties in natural rubber. Polym Compos 43:8181–8191. https://doi.org/10.1002/pc.26986

    Article  CAS  Google Scholar 

  29. Li X, Nie W, Xu Y, Zhou Y, Chen P, Zhang C (2020) Functionalized GO/polysulfide rubber composites with excellent comprehensive properties based interfacial optimum design. Compos B Eng 198:108234. https://doi.org/10.1016/j.compositesb.2020.108234

    Article  CAS  Google Scholar 

  30. Zhong B, Luo Y, Chen W, Luo Y, Hu D, Dong H, Jia Z, Jia D (2019) Immobilization of rubber additive on graphene for high-performance rubber composites. J Colloid Interface Sci 550:190–198. https://doi.org/10.1016/j.jcis.2019.05.006

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Yu S, Wu S, Fang S, Tang Z, Zhang L, Guo B (2023) Skeletal network enabling new-generation thermoplastic vulcanizates. Adv Mater 35:2300856. https://doi.org/10.1002/adma.202300856

    Article  CAS  Google Scholar 

  32. Li J, Zhao X, Zhang Z, Xian Y, Lin Y, Ji X, Lu Y, Zhang L (2020) Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement. Compos Sci Technol 186:107930. https://doi.org/10.1016/j.compscitech.2019.107930

    Article  CAS  Google Scholar 

  33. Feng H, Liu P, Guo X, Li J, Sun Y, Wu S, Hu R, Liu Z, Tian H, Ma Y, Liu C, Huang H, Teng F, Tang X, Yang A, Song A, Yang X, Huang Y (2023) PSS modified by 3-aminopropyltrimethoxysilane linking large-area GNPs/PSS to silicone rubber with stable interface combination for high sensitivity flexible resistive sensor. Chem Eng J 465:143009. https://doi.org/10.1016/j.cej.2023.143009

    Article  CAS  Google Scholar 

  34. Fan G, Wang Z, Ren H, Liu Y, Fan R (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scr Mater 190:1–6. https://doi.org/10.1016/j.scriptamat.2020.08.027

    Article  CAS  Google Scholar 

  35. Fan G, Wang Z, Sun K, Liu Y, Fan R (2021) Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol 61:125–131. https://doi.org/10.1016/j.jmst.2020.06.013

    Article  CAS  Google Scholar 

  36. Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F, Liu L (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos A Appl Sci Manuf 70:35–44. https://doi.org/10.1016/j.compositesa.2014.12.008

    Article  CAS  Google Scholar 

  37. Trinh LT, Quynh LAB, Hieu NH (2018) Synthesis of zinc oxide/graphene oxide nanocomposite material for antibacterial application. IJNT 15:108. https://doi.org/10.1504/IJNT.2018.089542

    Article  ADS  Google Scholar 

  38. Sudha D, Kumar ER, Shanjitha S, Munshi AM, Al-Hazmi GAA, El-Metwaly NM, Kirubavathy SJ (2023) Structural, optical, morphological and electrochemical properties of ZnO and graphene oxide blended ZnO nanocomposites. Ceram Int 49:7284–7288. https://doi.org/10.1016/j.ceramint.2022.10.192

    Article  CAS  Google Scholar 

  39. Chandramouli K, Suryanarayana B, Babu TA, Raghavendra V, Parajuli D, Murali N, Malapati V, Mammo TW, Shanmukhi PSV, Gudla UR (2021) Synthesis, structural and antibacterial activity of pure. Fe doped, and glucose capped ZnO nanoparticles Surf Interfaces 26:101327. https://doi.org/10.1016/j.surfin.2021.101327

  40. Olad A, Hagh HB (2019) Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering. Compos Part B Eng 162:692–702. https://doi.org/10.1016/j.compositesb.2019.01.040

  41. Cheng S, Duan X, Liu X, Zhang Z, An D, Zhao G, Liu Y (2021) Achieving significant thermal conductivity improvement via constructing vertically arranged and covalently bonded silicon carbide nanowires/natural rubber composites. J Mater Chem C 9:7127–7141. https://doi.org/10.1039/D1TC00659B

    Article  CAS  Google Scholar 

  42. Zheng L, Jerrams S, Su T, Xu Z, Zhang L, Liu L, Wen S (2020) Enhanced covalent interface, crosslinked network and gas barrier property of functionalized graphene oxide/styrene-butadiene rubber composites triggered by thiol-ene click reaction. Compos B Eng 197:108186. https://doi.org/10.1016/j.compositesb.2020.108186

    Article  CAS  Google Scholar 

  43. Li L, Tao H, Wu B, Zhu G, Li K, Lin N (2018) Triazole end-grafting on cellulose nanocrystals for water-redispersion improvement and reactive enhancement to nanocomposites. ACS Sustain Chem Eng 6:14888–14900. https://doi.org/10.1021/acssuschemeng.8b03407

    Article  CAS  Google Scholar 

  44. Yangthong H, Pichaiyut S, Wisunthorn S, Kummerlöwe C, Vennemann N, Nakason C (2020) Role of geopolymer as a cure activator in sulfur vulcanization of epoxidized natural rubber. J Appl Polym Sci 137:48624. https://doi.org/10.1002/app.48624

  45. Fei Z, Long C, Qingyan P, Shugao Z (2012) Influence of carbon black on crosslink density of natural rubber. J Macromol Sci Part B 51:1208–1217. https://doi.org/10.1080/00222348.2012.664494

    Article  ADS  CAS  Google Scholar 

  46. Bhave T, Tehrani M, Ali M, Sarvestani A (2018) Hysteresis friction and nonlinear viscoelasticity of rubber composites. Compos Commun 9:92–97. https://doi.org/10.1016/j.coco.2018.07.001

    Article  Google Scholar 

  47. Bazkiaei AK, Shirazi KH, Shishesaz M (2021) Thermo-hyper-viscoelastic analysis of a rubber cylinder under cyclic deformation. J Rubber Res 24:13–26. https://doi.org/10.1007/s42464-020-00068-2

    Article  CAS  Google Scholar 

  48. Zheng J, Han D, Zhao S, Ye X, Wang Y, Wu Y, Dong D, Liu J, Wu X, Zhang L (2018) Constructing a multiple covalent interface and isolating a dispersed structure in silica/rubber nanocomposites with excellent dynamic performance. ACS Appl Mater Interfaces 10:19922–19931. https://doi.org/10.1021/acsami.8b02358

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Shanxi Province Innovative Disciplinary Group of New Materials Industry (180049). This work was also supported by the National Natural Science Foundation of China (52203109), Fundamental Research Program of Shanxi Province (20210302124314), and Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (ZBKF2022020602).

Author information

Authors and Affiliations

Authors

Contributions

The author contribution can be briefly stated as follows: Haoyu Duan: conceptualization, writing—original draft, visualization; Xiaoyuan Duan: methodology, resources; Xiaohe Miao: methodology; Huatao Cheng: resources; Chaobo Liang: investigation, resources; Guizhe Zhao: funding acquisition; Yaqing Liu: supervision, funding acquisition; Shuaishuai Cheng: supervision, validation, writing—review and editing.

Corresponding authors

Correspondence to Yaqing Liu or Shuaishuai Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1763 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Duan, X., Miao, X. et al. Synergistically improving mechanical properties and lowering build-up heat in natural rubber tires through nano-zinc oxide on graphene oxide and strong cross-linked interfaces derived from thiol-ene click reaction. Adv Compos Hybrid Mater 7, 7 (2024). https://doi.org/10.1007/s42114-023-00817-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00817-y

Keywords

Navigation