Skip to main content
Log in

Effects of introducing Bis(2-hydroxyethyl) terephthalate (BHET) units on crystalline structure, polymorphism and hydrolysis degradation of poly(butylene adipate-ethylene terephthalate) random copolyesters

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aliphatic–aromatic copolyesters based on polybutylene adipate (PBA) and polyethylene terephthalate (PET) prepolymers were synthesized via the two-step melt polycondensation method. The existence of four sequences, namely, butylene adipate (BA), ethylene adipate (EA), butylene terephthalate (BT), and ethylene terephthalate (ET) was approved using 1HNMR spectra. Subsequently, the distribution of the sequences was calculated. The mean BA sequence length decreased markedly with increasing BHET molar ratio in the feed. Thermal properties were investigated using differential scanning calorimetry (DSC) and indicated that incorporating BHET decreases the melting point and crystallinity. Isothermal crystallization experiments show that increase in BHET content decreases the crystallization rate at constant degree of supercooling and same crystal structure. The formation of polymorphic crystals in tetrapolymers was approved by wide-angle X-ray diffraction (WAXD) patterns. Pure α-form crystals were developed after annealing at 27 °C for one month in PBA. Nevertheless, the same annealing conditions led to the development of mixed α- and β-form crystals in copolyesters with up to 15 mol% BHET. Increase of BHET content in the PBAET copolyesters causes decrease in the crystallinity and increase in the β-form crystals. Hence, increase in the elongation at break and decrease in the modulus of elasticity and yield strength of the samples were observed. The hydrolysis degradation rate in alkaline solution first increased, then decreased, and finally remained unchanged with increasing the amount of aromatic comonomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Subramanian P (2000) Plastics recycling and waste management in the US. Resour Conserv Recycl 28(3–4):253–263

    Article  Google Scholar 

  2. Yin L et al (2020) Comparison of the abundance of microplastics between rural and urban areas: A case study from East Dongting Lake. Chemosphere 244:125486

    Article  CAS  PubMed  Google Scholar 

  3. Kögel T et al (2020) Micro-and nanoplastic toxicity on aquatic life: Determining factors. Sci Total Environ 709:136050

  4. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

  5. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  PubMed  Google Scholar 

  6. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  CAS  Google Scholar 

  7. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6(1):1–8

    Article  CAS  Google Scholar 

  8. Gigli M et al (2016) Poly (butylene succinate)-based polyesters for biomedical applications: A review. Eur Polymer J 75:431–460

    Article  CAS  Google Scholar 

  9. Anthierens T et al (2012) Poly (butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material. Innov Food Sci Emerg Technol 15:81–85

    Article  CAS  Google Scholar 

  10. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    Article  CAS  Google Scholar 

  11. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  PubMed Central  Google Scholar 

  12. Gan Z et al (2005) The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly (butylene adipate) films. Polym Degrad Stab 87(1):191–199

    Article  CAS  Google Scholar 

  13. Woo EM, Wu MC (2005) Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly (butylene adipate). J Polym Sci, Part B: Polym Phys 43(13):1662–1672

    Article  CAS  Google Scholar 

  14. Gan Z, Abe H, Doi Y (2002) Temperature-Induced Polymorphic Crystals of Poly (butylene adipate). Macromol Chem Phys 203(16):2369–2374

    Article  CAS  Google Scholar 

  15. Zhao L et al (2007) Structural analysis of poly (butylene adipate) banded spherulites from their biodegradation behavior. Polymer 48(20):6152–6161

    Article  CAS  Google Scholar 

  16. Noguchi K et al (2005) Molecular and crystal structure of poly (tetramethylene adipate) α form based on synchrotron X-ray fiber diffraction. Polymer 46(24):10823–10830

    Article  CAS  Google Scholar 

  17. Pouget E et al (2003) On the crystalline structures of poly (tetramethylene adipate). Macromolecules 36(3):698–705

    Article  CAS  Google Scholar 

  18. Minke R, Blackwell J (1979) Polymorphic structures of poly (tetramethylene adipate). J Macromol Sci Part B Phys 16(3):407–417

    Article  Google Scholar 

  19. Kai W et al (2005) Crystallization of poly (butylene adipate) in the presence of nucleating agents. J Polym Sci, Part B: Polym Phys 43(17):2340–2351

    Article  CAS  Google Scholar 

  20. Zhao L, Gan Z (2006) Effect of copolymerized butylene terephthalate chains on polymorphism and enzymatic degradation of poly (butylene adipate). Polym Degrad Stab 91(10):2429–2436

    Article  CAS  Google Scholar 

  21. Liang Z et al (2010) Isomorphic crystallization of poly (hexamethylene adipate-co-butylene adipate): regulating crystal modification of polymorphic polyester from internal crystalline lattice. Macromolecules 43(15):6429–6437

    Article  CAS  Google Scholar 

  22. Pérez-Camargo RA et al (2017) Tailoring the structure, morphology, and crystallization of isodimorphic poly (butylene succinate-ran-butylene adipate) random copolymers by changing composition and thermal history. Macromolecules 50(2):597–608

    Article  CAS  Google Scholar 

  23. Müller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86(2):87–95

    Article  PubMed  Google Scholar 

  24. Flores I et al (2019) PET-ran-PLA Partially Degradable Random Copolymers Prepared by Organocatalysis: Effect of Poly (l-lactic acid) Incorporation on Crystallization and Morphology. ACS Sustainable Chemistry & Engineering 7(9):8647–8659

    Article  CAS  Google Scholar 

  25. Shirali H, Rafizadeh M, Taromi FA (2015) Effect of incorporating bis (2-hydroxyethyl) terephthalate on thermal and mechanical properties and degradability of poly (butylene succinate). Macromol Res 23(8):755–764

    Article  CAS  Google Scholar 

  26. Deng LM et al (2004) A new biodegradable copolyester poly (butylene succinate-co-ethylene succinate-co-ethylene terephthalate). Acta Mater 52(20):5871–5878

    Article  CAS  Google Scholar 

  27. Kuwabara K et al (2002) Crystalline/Amorphous Phase Structure and Molecular Mobility of Biodegradable Poly (butylene adipate-c o-butylene terephthalate) and Related Polyesters. Biomacromol 3(2):390–396

    Article  CAS  Google Scholar 

  28. Cranston E et al (2003) Cocrystallization model for synthetic biodegradable poly (butylene adipate-co-butylene terephthalate). Biomacromol 4(4):995–999

    Article  CAS  Google Scholar 

  29. Lu J et al (2019) Biobased 1, 5-pentanediol derived aliphatic-aromatic copolyesters: Synthesis and thermo-mechanical properties of poly (pentylene succinate-co-terephthalate) s and poly (pentylene adipate-co-terephthalate) s. Polym Degrad Stab 163:68–75

    Article  CAS  Google Scholar 

  30. Lu J, Wu L, Li BG (2017) High molecular weight polyesters derived from biobased 1, 5-pentanediol and a variety of aliphatic diacids: synthesis, characterization, and thermo-mechanical properties. ACS Sustainable Chemistry & Engineering 5(7):6159–6166

    Article  CAS  Google Scholar 

  31. Berkowitz S (1984) Viscosity–molecular weight relationships for poly (ethylene terephthalate) in hexafluoroisopropanol–pentafluorophenol using SEC–LALLS. J Appl Polym Sci 29(12):4353–4361

    Article  CAS  Google Scholar 

  32. Papadopoulos L et al (2018) Synthesis and characterization of novel poly (ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polym Degrad Stab 156:32–42

    Article  CAS  Google Scholar 

  33. Lorenzo AT et al (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Testing 26(2):222–231

    Article  CAS  Google Scholar 

  34. Smith BC (2011) Fundamentals of Fourier transform infrared spectroscopy. CRC press

  35. Papageorgiou GZ, Nanaki SG, Bikiaris DN (2010) Synthesis and characterization of novel poly (propylene terephthalate-co-adipate) biodegradable random copolyesters. Polym Degrad Stab 95(4):627–637

    Article  CAS  Google Scholar 

  36. Gan Z et al (2004) Solid-state structures and thermal properties of aliphatic–aromatic poly (butylene adipate-co-butylene terephthalate) copolyesters. Polym Degrad Stab 83(2):289–300

    Article  CAS  Google Scholar 

  37. Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly (butylene succinate-co-butylene adipate) s. Polym Degrad Stab 74(2):263–270

    Article  CAS  Google Scholar 

  38. Gan Z et al (2004) Metastability and transformation of polymorphic crystals in biodegradable poly (butylene adipate). Biomacromol 5(2):371–378

    Article  CAS  Google Scholar 

  39. Wang M, Tashiro K, Ozaki Y (2017) Reinvestigation of the β-to-α Crystal Phase Transition of Poly (butylene adipate) by the Time-Resolved X-ray Scattering and FTIR Spectral Measurements in the Temperature-Jump Process. Macromolecules 50(10):3883–3889

    Article  CAS  Google Scholar 

  40. Cho T, Heck B, Strobl G (2004) Equations describing lamellar structure parameters and melting points of polyethylene-co-(butene/octene) s. Colloid Polym Sci 282(8):825–832

    Article  CAS  Google Scholar 

  41. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7(12):1103–1112

  42. Avrami M (1940) Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. J Chem Phys 8(2):212–224

  43. Müller AJ, Balsamo V, Arnal ML (2005) Nucleation and crystallization in diblock and triblock copolymers. Block copolymers II. Springer, pp 1–63

    Google Scholar 

  44. Ye HM et al (2018) Effect of cellulose nanocrystals on the crystallization behavior and enzymatic degradation of poly (butylene adipate). Carbohyd Polym 189:99–106

    Article  CAS  Google Scholar 

  45. Liu J et al (2011) Formation of ring-banded spherulites of α and β modifications in Poly (butylene adipate). Polymer 52(20):4619–4630

    Article  CAS  Google Scholar 

  46. Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A 66(1):13–28

  47. Yang J et al (2011) Fractionated crystallization, polymorphic crystalline structure, and spherulite morphology of poly (butylene adipate) in its miscible blend with poly (butylene succinate). Polymer 52(15):3460–3468

    Article  CAS  Google Scholar 

  48. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34(7):605–640

    Article  CAS  Google Scholar 

  49. Pérez-Camargo RA et al (2018) Crystallization of isodimorphic aliphatic random copolyesters: Pseudo-eutectic behavior and double-crystalline materials. Eur Polymer J 101:233–247

    Article  CAS  Google Scholar 

  50. Wojtczak M et al (2017) Classification of aliphatic-butylene terephthalate copolyesters in relation to aliphatic/aromatic ratio. Polymer 113:119–134

    Article  CAS  Google Scholar 

  51. Berti C et al (2008) Novel copolyesters based on poly (alkylene dicarboxylate) s: 1. Thermal behavior and biodegradation of aliphatic–aromatic random copolymers. Eur Polym J 44(11):3650–3661

  52. Flory PJ (1955) Theory of crystallization in copolymers. Trans Faraday Soc 51:848–857

    Article  CAS  Google Scholar 

  53. Baur H (1966) Influence of sequence-length. Distribution on the melting end point of copolymers. Makromol Chem 98:297–301

  54. Sanchez IC, Eby R (1975) Thermodynamics and crystallization of random copolymers. Macromolecules 8(5):638–641

    Article  CAS  Google Scholar 

  55. Wendling J, Gusev AA, Suter UW (1998) Predicting the cocrystallization behavior of random copolymers via free energy calculations. Macromolecules 31(8):2509–2515

    Article  CAS  Google Scholar 

  56. Wendling J, Suter U (1998) A new model describing the cocrystallization behavior of random copolymers. Macromolecules 31(8):2516–2520

    Article  CAS  Google Scholar 

  57. Wendling J et al (1999) Crystal Morphology and Thermodynamics of Poly (ethylene-4, 4 ‘-biphenyl dicarboxylate) and Related Copolymers with Ethylene-2, 6-naphthalene Dicarboxylate. Macromolecules 32(23):7866–7878

    Article  CAS  Google Scholar 

  58. Tserki V et al (2006) Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly (butylene succinate-co-butylene adipate). Polym Degrad Stab 91(2):367–376

  59. Buchanan F, Leonard D (2008) Influence of processing, sterilisation and storage on bioresorbability. In: Degradation Rate of Bioresorbable Materials. Woodhead Publishing, pp 209–233

  60. Larranaga A, Lizundia E (2019) A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur Polym J 121:109296

  61. Laycock B et al (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189

    Article  CAS  Google Scholar 

  62. Kijchavengkul T et al (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rafizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, A., Rafizadeh, M. Effects of introducing Bis(2-hydroxyethyl) terephthalate (BHET) units on crystalline structure, polymorphism and hydrolysis degradation of poly(butylene adipate-ethylene terephthalate) random copolyesters. J Polym Res 28, 339 (2021). https://doi.org/10.1007/s10965-021-02679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02679-8

Keywords

Navigation