Skip to main content
Log in

Self-assembly and rheological behavior of chloramphenicol-based poly(ester ether)urethanes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New poly(ester ether)urethanes containing biocide chloramphenicol in the hard segments are presented. SEM microphotographs evidence highly porous morphologies which depend on the nature of polyether segments. The self-assembly ability in micellar aggregates was evidenced by TEM and DLS analyses. Critical micelle concentration values determined by steady-state fluorescence measurements tend to increase with more solvophilic poly(ethylene oxide) and β-cyclodextrin segments. The flow curves reveal shear thinning (pseudoplastic behavior) followed by Newtonian plateaus for all studied polyurethane solutions. The complex viscosity reveals shear thinning behavior at low values of angular frequency followed by shear thickening behavior at higher values of angular frequency. The rheological temperature test evidences an Arrhenius thermothinning behavior at low temperatures followed by thermothickening behavior at higher temperatures. The studied polyurethanes have thermoresponsive and thermoassociative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lai S, Jin Y, Li H, Sun X, Pan J (2018) Hierarchical self-assembly of Y-shaped amphiphilic triblock polyurethane/poly(acrylic acid) complexes: Giant vesicles, vesicles, 3D network, and bulk structures. J Appl Polym Sci 135:46503

    Article  Google Scholar 

  2. Cheng X, Jin Y, Fan B, Qi R, Li H, Fan W (2016) Self-assembly of polyurethane phosphate ester with phospholipid-like structures: spherical, worm-like micelles, vesicles, and large compound vesicles. ACS Macro Lett 5:238–243

    Article  CAS  Google Scholar 

  3. Zhang X, Gong T, Chi H, Li T (2018) Nanostructured polyurethane perylene bisimide ester assemblies with tuneable morphology and enhanced stability. R Soc Open Sci 5:171686

    Article  Google Scholar 

  4. Basu A, Farah S, Kunduru KR, Doppalapudi S, Khan W, Domb AJ (2016) Polyurethanes for controlled drug delivery. Adv Polyurethane Biomater 8:217–246

    Article  Google Scholar 

  5. Iskakov R, Batyrbekov EO, Leonova MB, Zhubanov BA (2000) Preparation and release profiles of cyclophosphamide from segmented polyurethanes. J Appl Polymer Sci 75:35–43

    Article  CAS  Google Scholar 

  6. Qi D, Wang J, Qi Y, Wen J, Wei S, Liu D, Yu S (2020) One pot preparation of polyurethane-based GSH-responsive core-shell nanogels for controlled drug delivery. J Appl Polym Sci 137:48473

    Article  CAS  Google Scholar 

  7. Thandavamoorthy S, Gopinath N, Ramkumar SS (2006) Self-assembled honeycomb polyurethane nanofibers. J Appl Polym Sci 101:3121–3124

    Article  CAS  Google Scholar 

  8. Ding M, He X, Wang Z, Li J, Tan H, Deng H, Fu Q, Gu Q (2011) Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. Biomaterials 32:9515–9524

    Article  CAS  Google Scholar 

  9. Zhai T, Guan YY, Luo JB (2016) Preparation and characterization of pH-responsive polyurethane micelles.I. J N T R 2:6–11

    Google Scholar 

  10. Khosroushahi AY, Naderi-Manesh H, Yeganeh H, Barar J, Omidi Y (2012) Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities. J Nanobiotechnology 10:2

    Article  CAS  Google Scholar 

  11. Yu C, Tan X, Xu Z, Zhu G, Teng W, Zhao Q, Liang Z, Wu Z, Xiong D (2020) Smart drug carrier based on polyurethane material for enhanced and controlled DOX release triggered by redox stimulus. React Funct Polym 148:104507

  12. Gou PF, Zhu WP, Shen ZQ (2010) Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A14B7 miktoarm star copolymers based on poly(ε-caprolactone) and poly(ethylene glycol). Biomacromol 11:934–943

    Article  CAS  Google Scholar 

  13. Liu M, Liu T, Chen X, Yang J, Deng J, He W, Zhang X, Lei Q, Hu X, Luo G, Wu J (2018) Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J Nanobiotechnol 16:89

    Article  CAS  Google Scholar 

  14. Fang D, Pi M, Pan Z, Song N, He X, Li J, Luo F, Tan H, Li Z (2019) Stable, bioresponsive, and macrophage-evading polyurethane micelles containing an anionic tripeptide chain extender. ACS Omega 4:16551–16563

    Article  CAS  Google Scholar 

  15. Mankoci S, Ewing J, Dalai P, Sahai N, Barton HA, Joy A (2019) Bacterial membrane selective antimicrobial peptide-mimetic polyurethanes: structure−property correlations and mechanisms of action. Biomacromol 20:4096–4106

    Article  CAS  Google Scholar 

  16. Filip D, Macocinschi D, Tuchilus CG, Vlad S, Zaltariov MF, Varganici CD (2018) Chloramphenicol-based poly(ester-ether)urethane bioconjugates with antibacterial properties for biomedical applications. Polym Bull 75:701–727

    Article  CAS  Google Scholar 

  17. Osswald TA, Rudolph N (2014) Polymer rheology, fundamentals and applications. Hanser Publishers, Munich

    Google Scholar 

  18. Nalluri SM, Krishnan GR, Cheah C, Arzumand A, Yuan Y, Richardson CA, Yang S, Sarkar D (2015) Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 54:182–195

    Article  CAS  Google Scholar 

  19. Greaves TL, Weerawardena A, Drummond CJ (2011) Nanostructures and amphiphile self-assembly in polar molecular solvents: amides and the “solvophobic effect.” Phys Chem Chem Phys 13:9180–9186

    Article  CAS  Google Scholar 

  20. Jalili R, Aboutalebi S, Esrafilzadeh D, Konstantinov KK, Moulton SE, Razal JM, Wallace GG (2013) Organic solvent-based grapheme oxide liquid crystals. A facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 7(5):3981–3990

  21. Evans DF (1988) Self-Organization of Amphiphiles. Langmuir 4:3–12

    Article  CAS  Google Scholar 

  22. Greaves TL, Weerawardena A, Fong C, Drummond CJ (2006) Many protic ionic liquids mediate hydrocarbon-solvent interactions and promote amphiphile self-assembly. Langmuir 23:402–404

    Article  Google Scholar 

  23. Dudko V, Ottermann K, Rosenfeldt S, Papastavrou G, Breu J (2021) Osmotic delamination: A forceless alternative for the production of nanosheets now in highly polar and aprotic solvents. Langmuir 37(1):461–468

    Article  CAS  Google Scholar 

  24. Zhang L, Eisenberg A (1996) Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 118:3168–3181

    Article  CAS  Google Scholar 

  25. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57. https://doi.org/10.3390/pharmaceutics10020057

  26. Cerar J, Jamnik A, Tomšič M (2019) Supra-molecular structure and rheological aspects of liquid terminal 1, n-diols from ethylene glycol, 1,3-propandiol, 1,4-butanediol to 1,5-pentanediol. J Mol Liq 276:307–317

    Article  CAS  Google Scholar 

  27. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  28. Tant MR, Mauritz KA, Wilkes GL (1997) Ionomers. Synthesis, structure, properties and applications. Blackie Academic and Professional, London, UK

  29. Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends, practical guides for predicting and designing miscible polymer mixtures. Technomic Publishing Company Inc, Pennsylvania, USA

    Google Scholar 

  30. Liu WH, Yu TL, Lin HL (2007) Shear Thickening behavior of dilute poly(diallyl dimethyl ammonium chloride) aqueous solutions. Polymer 48:4152–4165

    Article  CAS  Google Scholar 

  31. Martin-Alfonso J, Cuadri A, Berta M, Stading M (2018) Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions. Carbohydr Polym 181:63–70

    Article  CAS  Google Scholar 

  32. Kishbaugh AJ, Mc Hugh A (1993) A rheo-optical study of shear-thickening and structure formation in polymer solutions Part I Experimental. Rheol Acta 32:9–24

    Article  CAS  Google Scholar 

  33. Kishbaugh AJ, McHugh A (1993) A rheo-optical study of shear-thickening and structure formation in polymer solutions. Part II Light scattering analysis. Rheol Acta 32:115–131

    Article  CAS  Google Scholar 

  34. Jiang B, Keffer DJ, Edwards BJ, Allred JN (2003) Modeling shear thickening in dilute polymer solutions: temperature, concentration, and molecular weight dependencies. J Appl Polym Sci 90:2997–3011

    Article  CAS  Google Scholar 

  35. Filip D, Macocinschi D, Vlad S, Ibanescu C, Danu M, Zaltariov MF (2019) Micellar and rheological properties of some sodium deoxycholate-based poly(ester ether)urethane ionomer biomaterials in N, N-dimethylformamide solutions. J Mol Liq 285:451–458

    Article  CAS  Google Scholar 

  36. Sanchez-Adsuar MS, Papon E, Villenave JJ (2000) Rheological characterization of thermoplastic polyurethane elastomers. Polym Int 49:591–598

    Article  CAS  Google Scholar 

  37. Filip D, Vlad S (2014) Rheological behaviour of some amphiphilic beta-cyclodextrin-based azo aromatic polyurethanes in N, N-dimethylformamide solutions. Polym Int 63:1944–1952

    Article  CAS  Google Scholar 

  38. de Vasconcelos CL, Martins RR, Ferreira MO, Pereira MR, Fonseca JLC (2001) Rheology of polyurethane solutions with different solvents. Polym Int 51:69–74

    Article  Google Scholar 

  39. Djabourov M, Nishinari K, Ross-Murphy SB (2013) Physical gels from biological and synthetic polymers. Cambridge University Press, New York

    Book  Google Scholar 

  40. Budtova T, Navard P (2015) Viscosity-temperature dependence and activation energy of cellulose solutions. Nord Pulp Pap Res J 30:99–104

    Article  CAS  Google Scholar 

  41. Marczak W, Adamczyk N, Lezniak M (2012) Viscosity of Associated mixtures approximated by the Grunberg-Nissan model. Int J Thermophys 33:680–691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0050, within PNCDI III.

Author information

Authors and Affiliations

Authors

Contributions

Doina Macocinschi and Daniela Filip: Conceptualization, Polyurethane preparation and characterization (DSC and SEM analyses); Constanta Ibanescu and Maricel Danu: Rheology measurements and Writing – original data on the Rheology results; Liviu Sacarescu: TEM analysis and interpretation: Mirela-Fernanda Zaltariov: Writing- Original draft preparation, Visualization, Investigation and Supervision, Funding acquisition and Project administration.

Corresponding author

Correspondence to Mirela-Fernanda Zaltariov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

All authors have seen and approved the submission of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaltariov, MF., Filip, D., Macocinschi, D. et al. Self-assembly and rheological behavior of chloramphenicol-based poly(ester ether)urethanes. J Polym Res 28, 190 (2021). https://doi.org/10.1007/s10965-021-02545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02545-7

Keywords

Navigation