Skip to main content

Self-assembling of Thermo-Responsive Block Copolymers: Structural, Thermal and Dielectric Investigations

  • Chapter
  • First Online:
Thermodynamics and Biophysics of Biomedical Nanosystems

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Plethora of amphiphilic polymers and copolymers have been synthesized that form self-assembled structures in aqueous media, resembling the assemblies of biopolymers invented by nature. Such polymeric systems serve as stimuli-responsive materials, i.e. they respond to small external changes in the environmental conditions, which is a common process for biopolymers in living organisms. Temperature is the most widely used stimulus in environmentally responsive polymer systems. Thermoresponsive polymers have attracted much research interest because of their potential applications, which include rheological control additives, thermal affinity separation, controlled drug release, gene therapy and regenerative medicine. On the other hand, they represent model systems for many biological systems, for example for the investigation of the interaction between peptide-like groups and solvents and, thus, for the study of protein stability in aqueous solutions. In this chapter, we provide a comprehensive view on recent investigations on the micellar aggregation and the thermoresponsive behavior of amphiphilic model polymers. Firstly, we will present general characteristics of the thermoresponsive behavior of macromolecules and discuss in more detail their applications with biomedical interest. Next, we will focus on the experimental investigation of thermoresponsive polymers and present, briefly, research outcomes concerning the properties of the well-studied poly(N-isopropylacrylamide) (PNIPAM) polymer. Then, we will present results with respect to the thermoresponsive behavior of a rather new class of polymers based on the nonionic poly(methoxy diethylene glycol acrylate) (PMDEGA) polymer. Copolymers with various architectures, namely diblock, triblock and star block copolymers are studied, as well as a PMDEGA homopolymer as reference. To that aim, complementary methods were applied, such as small-angle X-ray (SAXS), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). Seeking for understanding of fundamental aspects of the macromolecular thermoresponsive behavior, we present, in a comparative way, results obtained on PNIPAM- and PMDEGA-based systems. Characteristic differences between the two series of polymeric solutions are worked out, concerning the self-organization, the width and hysteresis of the transition, and the chain conformations during the demixing phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman, A.S.: ‘‘Intelligent” polymers in medicine and biotechnology. Artif. Organs 19, 458–467 (1995)

    Article  Google Scholar 

  2. Dimitrov, I., Trzebicka, B., Müller, A.J.E., Dworak, A., Tsvetanov, C.B.: Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci. 32, 1275–1343 (2007)

    Article  Google Scholar 

  3. Gil, E.S., Hudson, S.M.: Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 29, 1173–1222 (2004)

    Article  Google Scholar 

  4. Liu, R., Fraylich, M., Saunders, B.R.: Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym. Sci. 287, 627–643 (2009)

    Article  Google Scholar 

  5. Aseyev, V., Tenhu, H., Winnik, F.: Non-ionic thermoresponsive polymers in water. Adv. Polym. Sci. 242, 29–89 (2011)

    Article  Google Scholar 

  6. Koningsveld, R., Staverman, A.J.: Liquid–liquid phase separation in multicomponent polymer solutions. I. Statement of problem and description of methods of calculation. J. Polym. Sci. A2 6, 305–323 (1968)

    Google Scholar 

  7. Koningsveld, R., Staverman, A.J.: Liquid–liquid phase separation in multicomponent polymer solutions. 2. Critical state. J. Polym. Sci. A2 6, 325–347 (1968)

    Google Scholar 

  8. Weber, C., Hoogenboom, R., Schubert, U.S.: Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 37, 686–714 (2012)

    Article  Google Scholar 

  9. Heskins, M., Guillet, J.E.: Solution properties of poly (N-isopropylacrylamide). J. Macromol. Sci., Chem. 2, 1441–1455 (1968)

    Google Scholar 

  10. Halperin, A., Kröger, M., Winnik, F.M.: Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew. Chem. Int. Ed. 54, 15342–15367 (2015)

    Article  Google Scholar 

  11. Lanzalaco, S., Armelin, E.: Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3, 36 (2017) (31 pages)

    Google Scholar 

  12. Lutz, J.-F., Akdemir, O., Hoth, A.: Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128, 13046–13047 (2006)

    Article  Google Scholar 

  13. Hacker, M.C., Klouda, L., Ma, B.B., Kretlow, J.D., Mikos, A.G.: Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers. Biomacromol 9, 1558–1570 (2008)

    Article  Google Scholar 

  14. Ward, M.A., Georgiou, T.K.: Thermoresponsive polymers for biomedical applications. Polymers 3, 1215–1242 (2011)

    Article  Google Scholar 

  15. Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M.: Thermo-responsive amphiphilic Di- and triblock copolymers based on poly(N-isopropylacrylamide) and poly(methoxy diethylene glycol acrylate): aggregation and hydrogel formation in bulk solution and in thin films. In: Sadowski, G., Richtering, W. (eds.) Intelligent Hydrogels, Progress in Colloid and Polymer Science, vol. 140, pp. 15–34. Springer International Publishing, Switzerland (2013)

    Google Scholar 

  16. Tanii, H., Hashimoto, K.: In vitro neurotoxicity study with dorsal root ganglia for acrylamide and its derivatives. Toxicol. Lett. 58, 209–213 (1991)

    Article  Google Scholar 

  17. Lutz, J.-F.: Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci., Part A: Polym. Chem. 46, 3459–3470 (2008)

    Google Scholar 

  18. Miasnikova, A., Laschewsky, A.: Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture. J. Polym. Sci., Part A: Polym. Chem. 50, 3313–3323 (2012)

    Google Scholar 

  19. Zhong, Q., Wang, W., Adelsberger, J., Golosova, A., Bivigou-Koumba, A.M., Laschewsky, A., Funari, S.S., Perlich, J., Roth, S.V., Papadakis, C.M., Müller-Buschbaum, P.: Collapse transition in thin films of poly(methoxydiethylenglycol acrylate). Colloid Polym. Sci. 289, 569–581 (2011)

    Article  Google Scholar 

  20. Zhong, Q., Metwalli, E., Rawolle, M., Kaune, G., Bivigou-Koumba, A.M., Laschewsky, A., Papadakis, C.M., Cubitt, R., Wang, J., Müller-Buschbaum, P.: Influence of hydrophobic polystyrene blocks on the rehydration of polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films investigated by in situ neutron reflectivity. Macromolecules 49, 317–326 (2016)

    Article  Google Scholar 

  21. Zhong, Q., Metwalli, E., Rawolle, M., Kaune, G., Bivigou-Koumba, A.M., Laschewsky, A., Papadakis, C.M., Cubitt, R., Wang, J., Müller-Buschbaum, P.: Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity. Polymer 124, 263–273 (2017)

    Article  Google Scholar 

  22. Chen, T., Ferris, R., Zhang, J., Ducker, R., Zauscher, S.: Stimulus-responsive polymer brushes on surfaces: transduction mechanisms and applications. Prog. Polym. Sci. 35, 94–112 (2010)

    Article  Google Scholar 

  23. Hrubý, M., Filippov, S.K., Štěpánek, P.: Smart polymers in drug delivery systems on crossroads: which way deserves following? Eur. Polym. J. 65, 82–97 (2015)

    Article  Google Scholar 

  24. Gupta, P., Vermani, K., Garg, S.: Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002)

    Article  Google Scholar 

  25. Jeong, B., Gutowska, A.: Lessons from nature: stimuliresponsive polymers and their biomedical applications. Trends Biotechnol. 20, 305–311 (2002)

    Article  Google Scholar 

  26. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)

    Article  Google Scholar 

  27. Yokoyama, M.: Gene delivery using temperature-responsive polymeric carriers. Drug Discov. Today 7, 426–432 (2002)

    Article  Google Scholar 

  28. Galaev, L.Y., Mattiasson, B.: ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 17, 335–340 (2000)

    Article  Google Scholar 

  29. Aguilar, M.R., Elvira, C., Gallardo, A., Vázquez, B., Román, J.S.: Smart polymers and their applications as biomaterials. In: Ashammakhi, N., Reis, R., Chiellini, E. (eds.) Topics in Tissue Engineering, vol. 3, Chap. 6 (2007)

    Google Scholar 

  30. Nagase, K., Okano, T.: Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations. J. Mater. Chem. B 4, 6381–6397 (2016)

    Article  Google Scholar 

  31. Shiraga, K., Naito, H., Suzuki, T., Kondo, N., Ogawa, Y.: Hydration and hydrogen bond network of water during the coil-to-globule transition in poly(N isopropyl-acrylamide) aqueous solution at cloud point temperature. J. Phys. Chem. B 119, 5576–5587 (2015)

    Article  Google Scholar 

  32. Chen, G., Hoffman, A.S.: Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373, 49–52 (1995)

    Article  Google Scholar 

  33. van der Vegt, N.F.A., Nayar, D.: The hydrophobic effect and the role of cosolvents. J. Phys. Chem. B 121, 9986–9998 (2017)

    Article  Google Scholar 

  34. Otake, K., Inomata, H., Konno, M., Saito, S.: Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23, 283–289 (1990)

    Article  Google Scholar 

  35. Bae, Y.H., Okano, T., Kim, S.W.: Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water. J. Polym. Sci., Polym. Phys. Ed. 28, 923–936 (1990)

    Google Scholar 

  36. Ding, Y., Ye, X., Zhang, G.: Can coil-to-globule transition of a single chain be treated as a phase transition? J. Phys. Chem. B 112, 8496–8498 (2008)

    Article  Google Scholar 

  37. Afroze, F., Nies, E., Berghmans, H.: Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J. Mol. Struct. 554, 55–68 (2000)

    Article  Google Scholar 

  38. Aleksandrova, R., Philipp, M., Müller, U., Riobóo, R.J., Ostermeyer, M., Sanctuary, R., Müller-Buschbaum, P., Krüger, J.K.: Phase instability and molecular kinetics provoked by repeated crossing of the demixing transition of PNIPAM solutions. Langmuir 30, 11792–11801 (2014)

    Article  Google Scholar 

  39. Taylor, M.J., Tomlins, P., Sahota, T.S.: Thermoresponsive gels. Gels 3, 4 (2017) (31 pages)

    Google Scholar 

  40. Zaccone, A., Crassous, J.J., Ballauff, M.: Colloidal gelation with variable attraction energy. J. Chem. Phys. 138, 104908–104908 (2013)

    Google Scholar 

  41. Kyriakos, K.: Cononsolvency of PNIPAM in water/alcohol mixtures—A neutron scattering study, Ph.D. Thesis, Technical University of Munich (2015)

    Google Scholar 

  42. Okada, Y., Tanaka, F.: Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) Solutions. Macromolecules 38, 4465–4471 (2005)

    Article  Google Scholar 

  43. Tanaka, F., Koga, T., Winnik, F.M.: Competitive hydrogen bonds and cononsolvency of poly(N-isopropylacrylamide)s in mixed solvents of water/methanol. Prog. Colloid Polym. Sci. 136, 1–7 (2009)

    Google Scholar 

  44. Meeussen, F., Nies, E., Berghmans, H., Verbrugghe, S., Goethals, E., Du Prez, F.E.: Phase behaviour of poly(N-vinyl caprolactam) in water. Polymer 41, 8597–8602 (2000)

    Article  Google Scholar 

  45. Van Durme, K., Verbrugghe, S., Du Prez, F.E., Van Mele, B.: Influence of poly(ethylene oxide) grafts on kinetics of LCST behavior in aqueous Poly(N-vinylcaprolactam) solutions and networks studied by modulated temperature DSC. Macromolecules 37, 1054–1061 (2004)

    Article  Google Scholar 

  46. Van Durme, K., Van Assche, G., Van Mele, B.: Kinetics of demixing and remixing in poly(N-isopropylacrylamide)/water studied by modulated temperature DSC. Macromolecules 37, 9596–9605 (2004)

    Article  Google Scholar 

  47. Liu, F., Urban, M.W.: Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35, 3–23 (2010)

    Article  Google Scholar 

  48. Urban, M.W.: Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Prog. Polym. Sci. 34, 679–687 (2009)

    Article  Google Scholar 

  49. Pelton, R.: Temperature-sensitive aqueous microgels. R. Adv. Colloid Interface Sci. 85, 1–33 (2000)

    Article  Google Scholar 

  50. Hofmann, C.H., Plamper, F.A., Scherzinger, C., Hietala, S., Richtering, W.: Cononsolvency revisited: solvent entrapment by N-isopropylacrylamide and N, N-diethylacrylamide microgels in different water/methanol mixtures. Macromolecules 46, 523–532 (2013)

    Article  Google Scholar 

  51. Geismann, C., Ulbricht, M.: Photoreactive functionalization of poly(ethylene terephthalate) tracketched pore surfaces with “smart” polymer systems. Macromol. Chem. Phys. 206, 268–281 (2005)

    Article  Google Scholar 

  52. Li, S.K., D’Emanuele, A.: On-off transport through a thermoresponsive hydrogel composite membrane. J. Control. Release 75, 55–67 (2001)

    Google Scholar 

  53. Lupitsky, R., Roiter, Y., Minko, S., Tsitsilianis, C.: From smart polymer molecules to responsive nanostructured surfaces. Langmuir 21, 8591–8593 (2005)

    Article  Google Scholar 

  54. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A., Okano, T.: Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23, 561–567 (2002)

    Article  Google Scholar 

  55. Bromberg, L.E., Ron, E.S.: Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 31, 197–221 (1998)

    Article  Google Scholar 

  56. Zhang, K., Khan, A.: Phase behavior of poly(ethyleneoxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in water. Macromolecules 28, 3807–3812 (1995)

    Article  Google Scholar 

  57. Sweta, M., Jay Prakash, J., Domb, A.J., Neeraj, K.: Exploiting EPR in polymer drug conjugate delivery for tumor targeting. Curr. Pharm. Des. 12, 4785–4796 (2006)

    Google Scholar 

  58. Marcucci, F., Lefoulon, F.: Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov. Today 9, 219–228 (2004)

    Article  Google Scholar 

  59. Neoh, K.G., Kang, E.T.: Responsive surfaces for biomedical applications. MRS Bull. 35, 673–681 (2010)

    Article  Google Scholar 

  60. Alghunaim, A., Brink, E.T., Newby, B.-Z.: Surface immobilization of thermo-responsive poly(N-isopropylacrylamide) by simple entrapment in a 3-aminopropyl-triethoxysilane network. Polymer 101, 139–150 (2016)

    Article  Google Scholar 

  61. Hoffman, A.S.: Bioconjugates of intelligent polymers and recognition proteins for use in diagnostics and affinity separations. Clin. Chem. 46, 1478–1486 (2000)

    Google Scholar 

  62. Hoffman, A.S., Stayton, P.S., Press, O., Murthy, N., Lackey, C.A., Cheung, C., Black, F., Campbell, J., Fausto, N., Kyriakides, T.R., Bornstein, P.: Design of “smart” Polymers that can direct intracellular drug delivery. Polym. Advan. Technol. 13, 992–999 (2002)

    Article  Google Scholar 

  63. Kikuchi, A., Okano, T.: Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog. Polym. Sci. 27, 1165–1193 (2002)

    Article  Google Scholar 

  64. Kobayashi, J., Kikuchi, A., Sakai, K., Okano, T.: Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases. J. Chromatogr. A 958, 109–119 (2002)

    Article  Google Scholar 

  65. Wunderlich, B.: Thermal analysis. Academic Press, New York (1990)

    Book  Google Scholar 

  66. Hatakeyama, T., Quinn, F.X.: Thermal analysis, fundamentals and applications to polymer science. Wiley, Chichester (1994)

    Google Scholar 

  67. Schick, C.: Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioannal. Chem. 395, 1589–1611 (2009)

    Article  Google Scholar 

  68. Cho, E.C., Lee, J., Cho, K.: Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 36, 9929–9934 (2003)

    Article  Google Scholar 

  69. Grinberg, V.Y., Dubovik, A.S., Kuznetsov, D.V., Grinberg, N.V., Grosberg, A.Y., Tanaka, T.: Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamics functions. Macromolecules 33, 8685–8692 (2000)

    Google Scholar 

  70. Ding, Y., Ye, X., Zhang, G.: Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water. Macromolecules 38, 904–908 (2005)

    Article  Google Scholar 

  71. Maeda, T., Yamamoto, K., Aoyagi, T.: Importance of bound water in hydration-dehydration behavior of hydroxylated poly(N-isopropylacrylamide). J. Colloid Interface Sci. 302, 467–474 (2006)

    Article  Google Scholar 

  72. Aravopoulou, D., Kyriakos, K., Miasnikova, A., Laschewsky, A., Papadakis, C.M., Kyritsis, A.: Comparative investigation of the thermoresponsive behavior of two diblock copolymers comprising PNIPAM and PMDEGA blocks. J. Phys. Chem. B 122, 2655–2668 (2018)

    Article  Google Scholar 

  73. Tiktopulo, E.I., Bychkova, V.E., Ricka, J., Ptitsyn, O.B.: Cooperativity of the coil-globule transition in a homopolymer: microcalorimetric study of poly(N-isopropylacrylamide). Macromolecules 27, 2879–2882 (1994)

    Article  Google Scholar 

  74. Swier, S., Van Durme, B., Van Mele, B.: Modulated-temperature differential scanning calorimetry study of temperature-induced mixing and demixing in poly(vinylmethylether)/water. J. Polym. Sci.: Part B: Polym. Phys. 41, 1824–1836 (2003)

    Article  Google Scholar 

  75. Schick, C.: Temperature modulated differential scanning calorimetry (TMDSC)—basics and applications to polymers. In: Gallagher P.K. (Ed.) Handbook of Thermal Analysis and Calorimetry, vol. 3. Elsevier Science, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo (2002)

    Google Scholar 

  76. Reading, M., Hourston, D.J.: Modulated temperature differential scanning calorimetry: theoretical and practical applications in polymer characterisation. Springer, Berlin (2006)

    Book  Google Scholar 

  77. Müller, U., Philipp, M., Thomassey, M., Sanctuary, R., Krüger, J.K.: Temperature modulated optical refractometry: a quasi-isothermal method to determine the dynamic volume expansion coefficient. Thermochim. Acta 555, 17–22 (2013)

    Article  Google Scholar 

  78. Roe, R.-J.: Methods of X-Ray and neutron scattering in polymer science. Topics in Polymer Science, Oxford University Press (2000)

    Google Scholar 

  79. Shibayama, M., Tanaka, T., Han, C.C.: Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition temperature. J. Chem. Phys. 97, 6829–6841 (1992)

    Article  Google Scholar 

  80. Meier-Koll, A., Pipich, V., Busch, P., Papadakis, C.M., Müller-Buschbaum, P.: Phase separation in semidilute aqueous poly(N-isopropylacrylamide) solutions. Langmuir 28, 8791–8798 (2012)

    Article  Google Scholar 

  81. Porod, G.: Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid Z. Z. Polym. 125, 51–57 (1952)

    Article  Google Scholar 

  82. Adelsberger, J., Kulkarni, A., Jain, A., Wang, W., Bivigou-Koumba, A., Busch, P., Pipich, V., Holderer, O., Hellweg, T., Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M.: Thermoresponsive PS-b-PNIPAM-b-PS Micelle: aggregation behavior, segmental dynamics, and thermal response. Macromolecules 43, 2490–2501 (2010)

    Article  Google Scholar 

  83. Adelsberger, J., Meier-Koll, A., Bivigou-Koumba, A., Busch, P., Holderer, O., Hellweg, T., Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M.: The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers. Colloid Polym. Sci. 289, 711–720 (2011)

    Article  Google Scholar 

  84. Percus, J.K., Yevick, G.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  85. McGrum, N.G., Read, B.E., Williams, G.: Anelastic and dielectric effects in polymeric solids. Wiley, New York (1967)

    Google Scholar 

  86. Runt, J., Fitzgerald, J.J. (eds.): Dielectric Spectroscopy of Polymeric Materials. American Chemical Society, Washington, DC (1997)

    Google Scholar 

  87. Kremer, F., Schoenhals, A. (eds.): Broadband Dielectric Spectroscopy. Springer, Berlin (2003)

    Google Scholar 

  88. Yang, M., Zhao, K.: Anomalous volume phase transition temperature of thermosensitive semi-interpenetrating polymer network microgel suspension by dielectric spectroscopy. J. Phys. Chem. B 119, 13198–13207 (2015)

    Article  Google Scholar 

  89. Mohanty, P.S., Nöjd, S., Bergman, M.J., Nägele, G., Arrese-Igor, S., Alegria, A., Roa, R., Schurtenberger, P., Dhont, J.K.G.: Dielectric spectroscopy of ionic microgel suspensions. Soft Matter 12, 9705–9727 (2016)

    Article  Google Scholar 

  90. Ono, Y., Shikata, T.: Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution: a sharp phase transition at the lower critical solution temperature. J. Am. Chem. Soc. 128, 10030–10031 (2006)

    Article  Google Scholar 

  91. Ono, Y., Shikata, T.: Contrary hydration behavior of N-isopropylacrylamide to its polymer, P(NIPAm), with a lower critical solution temperature. J. Phys. Chem. B 111, 1511–1513 (2007)

    Article  Google Scholar 

  92. Satokawa, Y., Shikata, T., Tanaka, F., Qiu, X., Winnik, F.M.: Hydration and dynamic behavior of a cyclic poly(N-isopropylacrylamide) in aqueous solution: effects of the polymer chain topology. Macromolecules 42, 1400–1403 (2009)

    Article  Google Scholar 

  93. Masci, G., Cametti, C.: Dielectric properties of thermo-reversible hydrogels: the case of a dextran copolymer grafted with poly(N-isopropylacrylamide). J. Phys. Chem. B 113, 11421–11428 (2009)

    Article  Google Scholar 

  94. Masci, G., De Santis, S., Cametti, C.: Dielectric properties of micellar aggregates due to the self-assembly of thermoresponsive diblock copolymers. J. Phys. Chem. B 115, 2196–2204 (2011)

    Article  Google Scholar 

  95. Füllbrandt, M., Ermilova, E., Asadujjaman, A., Hölzel, R., Bier, F.F., von Klitzing, R., Schönhals, A.: Dynamics of linear poly(N isopropylacrylamide) in water around the phase transition investigated by dielectric relaxation spectroscopy. J. Phys. Chem. B 118, 3750–3759 (2014)

    Article  Google Scholar 

  96. Su, W., Zhao, K., Wei, J., Ngai, T.: Dielectric relaxations of poly (N-isopropyl-acrylamide) microgels near the volume phase transition temperature: impact of crosslinking density distribution on the volume phase transition. Soft Matter 10, 8711–8723 (2014)

    Article  Google Scholar 

  97. Su, W., Yang, M., Zhao, K., Ngai, T.: Influence of charged groups on the structure of microgel and volume phase transition by dielectric analysis. Macromolecules 49, 7997–8008 (2016)

    Article  Google Scholar 

  98. Gómez-Galván, F., Lara-Ceniceros, T., Mercado-Uribe, H.: Device for simultaneous measurements of the optical and dielectric properties of hydrogels. Meas. Sci. Technol. 23, 025602 (2012) (6 pp)

    Google Scholar 

  99. Zhou, J., Wei, J., Ngai, T., Wang, L., Zhu, D., Shen, J.: Correlation between dielectric/electric properties and cross-linking/charge density distributions of thermally sensitive spherical PNIPAM microgels. Macromolecules 45, 6158–6167 (2012)

    Article  Google Scholar 

  100. Füllbrandt, M., von Klitzing, R., Schönhals, A.: Probing the phase transition of aqueous solutions of linear low molecular weight poly(N-isopropylacrylamide) by dielectric spectroscopy. Soft Matter 8, 12116–12123 (2012)

    Article  Google Scholar 

  101. Füllbrandt, M., von Klitzing, R., Schönhals, A.: The dielectric signature of poly(N-isopropylacrylamide) microgels at the volume phase transition: dependence on the crosslinking density. Soft Matter 9, 4464–4471 (2013)

    Article  Google Scholar 

  102. Kyriakos, K., Aravopoulou, D., Augsbach, L., Sapper, J., Ottinger, S., Psylla, C., Rafat, A., Benitez-Montoya, C.A., Miasnikova, A., Di, Z., Laschewsky, A., Müller-Buschbaum, P., Kyritsis, A., Papadakis, C.M.: Novel thermoresponsive block copolymers having different architectures—structural, mechanical, thermal and dielectric investigations. Colloid Polym. Sci. 292, 1757–1774 (2014)

    Article  Google Scholar 

  103. Schild, H.G.: Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992)

    Article  Google Scholar 

  104. Choi, H.S., Yui, N.: Design of rapidly assembling supramolecular systems responsive to synchronized stimuli. Prog. Polym. Sci. 31, 121–144 (2006)

    Article  Google Scholar 

  105. Philipp, M., Kyriakos, K., Silvi, L., Lohstroh, W., Petry, W., Krüger, J.K., Papadakis, C.M., Müller-Buschbaum, P.: From molecular dehydration to excess volumes of phase-separating pnipam solutions. J. Phys. Chem. B 118, 4253–4260 (2014)

    Article  Google Scholar 

  106. Futscher, M.H., Philipp, M., Müller-Buschbaum, P., Schulte, A.: The role of backbone hydration of poly(N-isopropyl acrylamide) across the volume phase transition compared to its monomer. Sci. Rep. 7, 17272–7 (2017)

    Google Scholar 

  107. Bischofberger, I., Calzolari, D.C.E., De Los Rios, P., Jelezarov, I., Trappe, V.: Hydrophobic hydration of poly-N-isopropyl acrylamide: a matter of the mean energetic state of water. Sci. Rep. 4, 4377 (2014) (7 pages)

    Google Scholar 

  108. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, London (1979)

    Google Scholar 

  109. de Oliveira, T.E., Mukherji, D., Kremer, K., Netz, P.A.: Effects of stereochemistry and copolymerization on the LCST of PNIPAm. J. Chem. Phys. 146, 034904 (2017) (10 pages)

    Google Scholar 

  110. Liu, S.M., Taylor, C., Chong, B., Liu, L., Bilic, A., Terefe, N.S., Stockmann, R., Thang, S.H., De Silva, K.: Conformational transitions and dynamics of thermal responsive poly(N-isopropylacrylamide) polymers as revealed by molecular simulation. Eur. Polym. J. 55, 153–159 (2014)

    Article  Google Scholar 

  111. Katsumoto, Y., Tanaka, T., Ihara, K., Koyama, M., Ozaki, Y.: Contribution of intramolecular C = O\(\cdots\)H–N hydrogen bonding to the solvent-induced reentrant phase separation of poly(N-isopropylacrylamide). J. Phys. Chem. B 111, 12730–12737 (2007)

    Google Scholar 

  112. Xia, Y., Burke, N.A.D., Stover, H.D.H.: End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39, 2275–2283 (2006)

    Article  Google Scholar 

  113. Termühlen, F., Kuckling, D., Schönhoff, M.: Isothermal titration calorimetry to probe the coil-to-globule transition of thermoresponsive polymers. J. Phys. Chem. B 121, 8611–8618 (2017)

    Article  Google Scholar 

  114. Singh, R., Deshmukh, S.A., Kamath, G., Sankaranarayanan, S.K.R.S., Balasubramanian, G.: Controlling the aqueous solubility of PNIPAM with hydrophobic molecular units. Comput. Mater. Sci. 126, 191–203 (2017)

    Article  Google Scholar 

  115. Zhang, Y., Furyk, S., Bergbreiter, D.E., Cremer, P.S.: Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005)

    Article  Google Scholar 

  116. Scherzinger, C., Schwarz, A., Bardowb, A., Leonhard, K., Richtering, W.: Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Curr. Opin. Colloid Interface Sci. 19, 84–94 (2014)

    Article  Google Scholar 

  117. Kyriakos, K., Philipp, M., Adelsberger, J., Jaksch, S., Berezkin, A.V., Lugo, D.M., Richtering, W., Grillo, I., Miasnikova, A., Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M.: Cononsolvency of water/methanol mixtures for PNIPAM and PS‑b‑PNIPAM: pathway of aggregate formation investigated using time-resolved SANS. Macromolecules 47, 6867–6879 (2014)

    Article  Google Scholar 

  118. Hua, F., Jiang, X., Li, D., Zhao, B.: Well-Defined thermosensitive, water-soluble polyacrylates and polystyrenics with short pendant oligo(ethylene glycol) groups synthesized by nitroxide-mediated radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 44, 2454–2467 (2006)

    Google Scholar 

  119. Bordi, F., Cametti, C., Colby, R.H.: Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J. Phys.: Condens. Matter 16, R1423–R1463 (2004)

    Google Scholar 

  120. Bivigou-Koumba, A.M., Görnitz, E., Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M.: Thermoresponsive amphiphilic symmetrical triblock copolymers with a hydrophilic middle block made of poly(N-isopropylacrylamide): synthesis, self-organization, and hydrogel formation. Colloid. Polym. Sci. 288, 499–517 (2010)

    Google Scholar 

  121. Kujawa, P., Segui, F., Shaban, S., Diab, C., Okada, Y., Tanaka, F., Winnik, F.M.: Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules 39, 341–348 (2006)

    Article  Google Scholar 

  122. Koga, T., Tanaka, F., Motokawa, R., Koizumi, S., Winnik, F.M.: Theoretical modeling of associated structures in aqueous solutions of hydrophobically modified telechelic PNIPAM based on a neutron scattering study. Macromolecules 41, 9413–9422 (2008)

    Article  Google Scholar 

  123. Miasnikova, A., Laschewsky, A., De Paoli, G., Papadakis, C.M., Müller-Buschbaum, P., Funari, S.S.: Thermoresponsive hydrogels from symmetrical triblock copolymers poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene). Langmuir 28, 4479–4490 (2012)

    Article  Google Scholar 

  124. Troll, K., Kulkarni, A., Wang, W., Darko, C., Bivigou-Koumba, A.M., Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M.: The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films. Colloid Polym. Sci. 286, 1079–1092 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dionysia Aravopoulou (NTUA), Achille M. Bivigou-Koumba, Anna Miasnikova (Universität Potsdam), Joseph Adelsberger, Konstantinos Kyriakos, Andreas Meier-Koll, Peter Müller-Buschbaum and Kordelia Troll (TU München) who were or are involved in studies of thermoresponsive polymers in our groups. Financial support was provided by Deutsche Forschungsgemeinschaft (DFG) via the priority program SPP 1259 “Intelligente Hydrogele” (grants LA611/7, MU1487/8 and PA771/4) and by the German Academic Exchange Service (DAAD) within the program “Hochschulpartnerschaften mit Griechenland” (ResComp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kyritsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyritsis, A., Laschewsky, A., Papadakis, C.M. (2019). Self-assembling of Thermo-Responsive Block Copolymers: Structural, Thermal and Dielectric Investigations. In: Demetzos, C., Pippa, N. (eds) Thermodynamics and Biophysics of Biomedical Nanosystems. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0989-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0989-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0988-5

  • Online ISBN: 978-981-13-0989-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics