Skip to main content
Log in

Reinforcing potential of recycled carbon fibers in compatibilized polypropylene composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Materials that are low cost and lightweight are essential for future automotive and aerospace industries. While carbon fibers have been shown to achieve high mechanical properties for high-end applications, their high cost has generated interest to find cost-effective alternatives. The recent advances in recycling carbon fibers has created an opportunity to develop low cost composite materials. Using a maleic anhydride grafted polypropylene (MA-g-PP), the interfacial adhesion between the polypropylene (PP) matrix and the recycled carbon fibers is greatly improved. The integration of 20 wt% recycle carbon fibers result in 2.4 times, 4.9 times, and 5.7 times enhancements in tensile strength, notched Charpy impact strength, and flexural modulus, respectively. This enhancements in mechanical properties are significantly higher than those reported in previous works. The addition of recycled carbon fibers also increases the heat deflection temperature (HDT) of the neat PP sample, indicating the higher resistance of the composite samples at high temperature. This work demonstrates the great potential of the recycled carbon fibers in manufacturing cost-effective and high-performance PP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fu SY, Lauke B, Mäder E, Yue CY, Hu X (2000) Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos Part A Appl Sci Manuf 31:1117–1125. https://doi.org/10.1016/S1359-835X(00)00068-3

    Article  Google Scholar 

  2. Karsli NG, Aytac A (2011) Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 32:4069–4073. https://doi.org/10.1016/j.matdes.2011.03.021

    Article  CAS  Google Scholar 

  3. Kada D, Koubaa A, Tabak G, Migneault S, Garnier B, Boudenne A (2018) Tensile properties, thermal conductivity, and thermal stability of short carbon fiber reinforced polypropylene composites. Polym Compos 39:E664–E670. https://doi.org/10.1002/pc.24093

    Article  CAS  Google Scholar 

  4. Rezaei F, Yunus R, Ibrahim NA, Mahdi ES (2008) Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym - Plast Technol Eng 47:351–357. https://doi.org/10.1080/03602550801897323

    Article  CAS  Google Scholar 

  5. Nofar M, Ozgen E, Girginer B (2019) Injection-molded PP composites reinforced with talc and nanoclay for automotive applications. J Thermoplast Compos Mater 1–21. https://doi.org/10.1177/0892705719830461

  6. Nofar M, Hoa SV, Pugh MD (2009) Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks. Compos Sci Technol 69:1599–1606. https://doi.org/10.1016/j.compscitech.2009.03.010

    Article  CAS  Google Scholar 

  7. Landel RF, Nielsen LE (1993) Mechanical Properties of Polymers and Composites, 2nd edn. Taylor & Francis Group CRC Press, Broken Sound Pkwy

    Book  Google Scholar 

  8. Kossentini Kallel T, Taktak R, Guermaz N, Mnif N (2018) Mechanical and structural properties of glass fiber-reinforced polypropylene (PPGF) composites. Polym Compos 39:3497–3508. https://doi.org/10.1002/pc.24369

  9. Ghanbari A, Behzadfar E, Arjmand M (2019) Properties of talc filled reactor-made thermoplastic polyolefin composites. J Polym Res 26:241. https://doi.org/10.1007/s10965-019-1902-6

    Article  CAS  Google Scholar 

  10. Chin WK, Yang SW (1995) Mechanical properties of short fiber reinforced thermoplastic composites -I. Elastic properties and predictions. J Polym Res 2:31–37. https://doi.org/10.1007/BF01493431

  11. Rajak D, Pagar D, Menezes P, Linul E (2019) Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers (Basel) 11:1667. https://doi.org/10.3390/polym11101667

    Article  CAS  Google Scholar 

  12. Thomason JL, Groenewoud WM, (1996) The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 2. Thermal properties. Compos Part A Appl Sci Manuf 27:555–565. https://doi.org/10.1016/1359-835X(96)00016-4

  13. Ghanbari A, Jalili NS, Haddadi SA, Arjmand M, Nofar M (2020) Mechanical properties of extruded glass fiber reinforced thermoplastic polyolefin composites. Polym Compos 1–10. https://doi.org/10.1002/pc.25672

  14. Ngo T-D, Nofar M, Ton-That M-T, Hu W (2016) Flax and its thermoplastic biocomposites. J Compos Mater 50:3043–3051. https://doi.org/10.1177/0021998315615407

    Article  CAS  Google Scholar 

  15. Tjong SC, Xu SA, Mai YW (2003) Impact fracture toughness of short glass fiber-reinforced polyamide 6,6 hybrid composites containing elastomer particles using essential work of fracture concept. Mater Sci Eng A 347:338–345. https://doi.org/10.1016/S0921-5093(02)00609-3

    Article  Google Scholar 

  16. Wong KH, Syed Mohammed D, Pickering SJ, Brooks R (2012) Effect of coupling agents on reinforcing potential of recycled carbon fibre for polypropylene composite. Compos Sci Technol 72:835–844. https://doi.org/10.1016/j.compscitech.2012

  17. Ching ECY, Li RKY, Tjong SC, Mai Y-W (2003) Essential work of fracture (EWF) analysis for short glass fiber reinforced and rubber toughened nylon-6. Polym Eng Sci 43:558–569. https://doi.org/10.1002/pen.10045

    Article  CAS  Google Scholar 

  18. Laura DM, Keskkula H, Barlow JW, Paul DR (2000) Effect of glass fiber and maleated ethylene-propylene rubber content on tensile and impact properties of Nylon 6. Polymer (Guildf) 41:7165–7174. https://doi.org/10.1016/S0032-3861(00)00049-5

    Article  CAS  Google Scholar 

  19. Altay L, Atagur M, Akyuz O, Seki Y, Sen I, Sarikanat M, Sever K (2018) Manufacturing of recycled carbon fiber reinforced polypropylene composites by high speed thermo-kinetic mixing for lightweight applications. Polym Compos 39:3656–3665. https://doi.org/10.1002/pc.24394

    Article  CAS  Google Scholar 

  20. Gulrez SKH, Mohsin MEA, Al-Zahrani SM (2013) Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites. J Polym Res 20:1–9. https://doi.org/10.1007/s10965-013-0265-7

    Article  CAS  Google Scholar 

  21. Ni Q, Zhu X, Wang Y, Liu Z (2011) Microstructure and properties of polypropylene/glass fiber composites grafted with poly(pentaerythritol triacrylate). J Polym Res 18:917–926. https://doi.org/10.1007/s10965-010-9489-y

    Article  CAS  Google Scholar 

  22. Saleem A, Frormann L, Iqbal A (2007) Mechanical, thermal and electrical resisitivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J Polym Res 14:121–127. https://doi.org/10.1007/s10965-006-9091-5

    Article  CAS  Google Scholar 

  23. Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36:1335–1345. https://doi.org/10.1002/pc.23038

    Article  CAS  Google Scholar 

  24. McNally T, Boyd P, McClory C, Bien D, Moore I, Millar B, Davidson J, Carroll T (2008) Recycled carbon fiber filled polyethylene composites. J Appl Polym Sci 107:2015–2021. https://doi.org/10.1002/app.27253

    Article  CAS  Google Scholar 

  25. Plastics (2019) Determination of tensile properties. Part 1: General principles, International Organization for Standardization. ISO Standard No. 527–1

  26. Plastics (2019) Determination of flexural properties, International Organization for Standardization. ISO Standard No. 178

  27. Plastics (2010) Determination of Charpy impact properties. Part 1: Non-instrumented impact test, International Organization for Standardization. ISO Standard No. 179–1

  28. Plastics (2011) Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics. Part 1: Standard method, International Organization for Standardization. ISO Standard No. 1133

  29. Plastics (2020) Determination of temperature of deflection under load. Part 1: General test method, International Organization for Standardization. ISO Standard No. 75–1

  30. Karsli NG, Aytac A, Deniz V (2012) Effects of initial fiber length and fiber length distribution on the properties of carbon-fiber-reinforced-polypropylene composites. J Reinf Plast Compos 31:1053–1060. https://doi.org/10.1177/0731684412452678

    Article  CAS  Google Scholar 

  31. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72. https://doi.org/10.1088/0508-3443/3/3/302

    Article  Google Scholar 

  32. Krenchel H (1964) Fibre reinforcement : theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials. Akademisk Forlag, Copenhagen,  https://lib.ugent.be/catalog/rug01:001280222 Accessed 27 July 2020

  33. Ghanbari A, Mousavi Z, Heuzey MC, Patience GS, Carreau PJ (2020) Experimental Methods in Chemical Engineering: Rheometry. Can J Chem Eng 98:1456–1470. https://doi.org/10.1002/cjce.23749

  34. Xu XF, Ghanbari A, Leelapornpisit W, Heuzey MC, Carreau P (2011) Effect of ionomer on barrier and mechanical properties of PET/Organoclay nanocomposites prepared by melt compounding. Int Polym Process 26:444–455. https://doi.org/10.3139/217.2477

    Article  CAS  Google Scholar 

  35. Ghanbari A, Heuzey M-C, Carreau PJ, Ton-That M-T (2013) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74. https://doi.org/10.1007/s00397-012-0667-1

    Article  CAS  Google Scholar 

  36. Ghanbari A, Heuzey M-C, Carreau PJ, Ton-That M-T (2013) Morphology and properties of polymer/organoclay nanocomposites based on poly(ethylene terephthalate) and sulfopolyester blends. Polym Int 62:439–448. https://doi.org/10.1002/pi.4331

    Article  CAS  Google Scholar 

  37. Ghanbari A, Prud'homme RE (2017) Lamellar and spherulitic crystallization of poly(s-2-hydroxybutanoic acid) and its stereocomplexes. Polymer (Guildf) 112: 377–384. https://doi.org/10.1016/j.polymer.2017.02.018

  38. Liu W, Mohanty AK, Drzal LT, Misra M, Kurian JV, Miller RW, Strickland N (2005) Injection molded glass fiber reinforced poly(trimethylene terephthalate) composites: Fabrication and properties evaluation. Ind Eng Chem Res 44:857–862. https://doi.org/10.1021/ie049112f

    Article  CAS  Google Scholar 

  39. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer (Guildf) 54:1361–1369. https://doi.org/10.1016/J.POLYMER.2012.12.066

    Article  CAS  Google Scholar 

  40. Ren X, Wang XQ, Sui G, Zhong WH, Fuqua MA, Ulven CA (2008) Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin-screw extrusion. J Appl Polym Sci 107:2837–2845. https://doi.org/10.1002/app.27354

    Article  CAS  Google Scholar 

  41. Moballegh L, Hakim S, Morshedian J, Nekoomanesh M (2015) A new approach to increase toughness of synthesized PP/EPR in-reactor blends by introducing a copolymerization step under low ethylene concentration. J Polym Res 22:1–11. https://doi.org/10.1007/s10965-015-0709-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghanbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, A., Seyedin, S., Haddadi, S.A. et al. Reinforcing potential of recycled carbon fibers in compatibilized polypropylene composites. J Polym Res 28, 145 (2021). https://doi.org/10.1007/s10965-021-02506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02506-0

Keywords

Navigation