Skip to main content
Log in

Microstructure and properties of polypropylene/glass fiber composites grafted with poly(pentaerythritol triacrylate)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Isotactic polypropylene(PP)/glass fiber(GF) composites were modified by grafting polymerization of polyfunctional monomer, pentaerythritol triacrylate (PETA), in the presence of 2,5-dimethyl-2,5-di(tert-butylperoxy) hexane peroxide (DDHP) via melt extrusion. Fourier transform infrared spectroscopy (FTIR), melt strength test (MS), mechanical property test, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to characterize the microstructure and properties of the modified composites. The crystallization kinetics was investigated by Mo method while apparent activation energy of crystallization of the composites was determined by Kissinger method. The FTIR results showed that the acrylic polymers were grafted onto the polypropylene chains. The grafting made the melt strengths and the mechanical properties of the modified composites, and the interfacial adhesion between PP and glass fiber all enhanced. High melting and crystallization temperatures, high crystallization rate and large activation energy of crystallization were also obtained after grafting. In addition, the grafted acrylic polymers recovered the depressed crystallization of polypropylene and restrained α-β transition in fatigue experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Langston J, Dong JY, Chung TC (2005) Macromolecules 38(14):5849–5853

    Article  CAS  Google Scholar 

  2. Karian HG (ed) (2003) Handbook of polypropylene and polypropylene composites, 2nd edn. Marcel Dekker, New York

  3. Yu J, He J (2000) Polymer 41:891–898

    Article  CAS  Google Scholar 

  4. Morelli CL, Pouzada AS, Sousa JA (2009) J Appl Polym Sci 114:3592–3601

    Article  CAS  Google Scholar 

  5. Nishitani Y, Sekiguchi I, Hausnerova B, Zdrazilova N, Kitano T (2007) Polym Compos 15(2):111–119

    CAS  Google Scholar 

  6. Felix AHO, Cardozo NSM, Nachtigall SMB, Mauler RS (2006) Macromol Mater Eng 291:418–427

    Article  CAS  Google Scholar 

  7. Li Y, Chen LX, Zhou XD (2008) J Mater Sci 43(15):5083–5091

    Article  CAS  Google Scholar 

  8. Zhou SH, Gao Y, Wang YT, Hu CP, Dong QZ (2007) J Appl Polym Sci 104:1661–1670

    Article  CAS  Google Scholar 

  9. Kumar KS, Ghosh AK, Bhatnagar N (2007) J Reinf Plast Compos 26(3):239–249

    Article  CAS  Google Scholar 

  10. Kumar KS, Ghosh AK, Bhatnagar N (2007) Polym Compos 28(2):259–266

    Article  CAS  Google Scholar 

  11. Xie HQ, Zhang S, Xie D (2005) J Appl Polym Sci 96:1414–1420

    Article  CAS  Google Scholar 

  12. Graebling D (2002) Macromolecules 35:4602–4610

    Article  CAS  Google Scholar 

  13. Kim BK, Kim KJ (1993) Adv Polym Tech 12(3):263–269

    Article  CAS  Google Scholar 

  14. Wang XC, Tzoganakis C, Rempel GL (1996) J Appl Polym Sci 61:1395–1404

    Article  CAS  Google Scholar 

  15. Tian JH, Yu W, Zhou CX (2006) Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  16. Tian JH, Yu W, Zhou CX (2006) J Macromol Sci Part B Physics 45:969–985

    Article  CAS  Google Scholar 

  17. Guillet JE, Combs RL, Slonaker DF, Weemes DA, Coover HW (1965) J Appl Polym Sci 8:757–765

    Article  Google Scholar 

  18. Tabatabaei SH, Carreau PJ, Ajji A (2009) Chem Eng Sci 64:4719–4731

    Article  CAS  Google Scholar 

  19. Wang Y, Run M (2009) J Polym Res 16:725–737

    Article  CAS  Google Scholar 

  20. Avrami M (1940) J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  21. Zhang Y, Jiang X, Guan Y, Zheng A (2005) Mater Lett 59:3626–3634

    Article  CAS  Google Scholar 

  22. Dejuana R, Jauregui A, Calahorra E, Cortazar M (1996) Polymer 37:3339–3345

    Article  CAS  Google Scholar 

  23. Jeziorny A (1978) Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  24. Ozawa T (1971) Polymer 12:150–158

    Article  CAS  Google Scholar 

  25. Liu JP, Mo ZS, Qi YC, Zhang HF, Chen DL (1993) Acta Polym Sin 1:1–6, In Chinese

    Google Scholar 

  26. Kissinger HE (1956) J Res Natl Bur Stand 57:217–221

    CAS  Google Scholar 

  27. Ni QL, Fan JQ, Dong JY (2009) J Appl Polym Sci 114:2180–2194

    Article  CAS  Google Scholar 

  28. Lugão AB, Cardoso E, Lima LF, Hustzler B, Tokumoto S (2003) Nucl Instrum Methods Phys Res Sect B 208:252–255

    Article  Google Scholar 

  29. Ye CM, Liu JJ, Mo ZS, Tang GB, Jing XB (1996) J Appl Polym Sci 60:1877–1881

    Article  CAS  Google Scholar 

  30. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Makromol Chem 75:134–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinsheng Zhu or Yaorong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Q., Zhu, X., Wang, Y. et al. Microstructure and properties of polypropylene/glass fiber composites grafted with poly(pentaerythritol triacrylate). J Polym Res 18, 917–926 (2011). https://doi.org/10.1007/s10965-010-9489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9489-y

Keywords

Navigation