Skip to main content
Log in

Covalent triazine based polymer with high nitrogen levels for removal of copper‎‎ (II) ions ‎from aqueous solutions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The tremendous popularity of porous organic polymers in all fields of Science is irrefutable these days. The current study investigates the application of an accessible covalent triazine-based polymer (CTP) synthesized from 2,4,6-tris(hydrazino)-1,3,5-triazine (THT) and terephthaldehyde (TA) in a Pyrex sealed tube. The prepared CTP can efficiently remove the Cu(II) ions from aqueous solutions. After the successful CTP synthesis, it was characterized using different methods, including FE-SEM, XRD, CO2 adsorption isotherm, and TGA. A wide range of pH with different adsorbate concentrations and times were investigated to study the batch adsorption experiment. The excellent adsorption of Cu(II) ions at the optimal pH of 7 with a maximum capacity of 86.95 mg. g− 1 and excellent thermal stability makes it the right industrial investigation choice. Moreover, the obtained data reveal that the adsorption isotherm obeys the Langmuir model, and the adsorption kinetics obeys the pseudo-second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bakker K (2012) Water security: research challenges and opportunities. Science 337:914–915

    Article  CAS  PubMed  Google Scholar 

  2. Mokhtari N, Dinari M, Rahmanian O (2019) Novel porous organic triazine-based polyimide with high nitrogen levels for highly efficient removal of Ni (II) from aqueous solution. Polym Int 68:1178–1185

    Article  CAS  Google Scholar 

  3. Srinivas M, Venkata RC, Kakarla RR, Shetti NP, Reddy M, Anjanapura VR (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Materials Research Express 6:125502

    Article  CAS  Google Scholar 

  4. Reddy KR, Karthik K, Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    Article  CAS  Google Scholar 

  5. Afshari M, Dinari M, Zargoosh K, Moradi H (2020) Novel triazine-based covalent organic framework as a superadsorbent for the removal of mercury (II) from aqueous solutions. Ind Eng Chem Res 59:9116–9126

    Article  CAS  Google Scholar 

  6. Stanković MN, Krstić NS, Mitrović JZ, Najdanović SM, Petrović MM, Bojić DV, Dimitrijević VD, Bojić AL (2016) Biosorption of Copper (II) ions by methyl-sulfonated Lagenaria vulgaris shell: kinetic, thermodynamic and desorption studies. New J Chem 40:2126–2134

    Article  Google Scholar 

  7. Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat MR, Alkasrawi M (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chem Eng J 260:749–756

    Article  CAS  Google Scholar 

  8. Lam B, Déon S, Morin-Crini N, Crini G, Fievet P (2018) Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J Clean Prod 171:927–933

    Article  CAS  Google Scholar 

  9. Li Y, Cui W, Liu L, Zong R, Yao W, Liang Y, Zhu Y (2016) Removal of Cr (VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl Catal B 199:412–423

    Article  CAS  Google Scholar 

  10. Peligro FR, Pavlovic I, Rojas R, Barriga C (2016) Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides. Chem Eng J 306:1035–1040

    Article  CAS  Google Scholar 

  11. Tan JZ, Nursam NM, Xia F, Sani M-A, Li W, Wang X, Caruso RA (2017) High-performance coral reef-like carbon nitrides: synthesis and application in photocatalysis and heavy metal ion adsorption. ACS Appl Mater Interfaces 9:4540–4547

    Article  CAS  PubMed  Google Scholar 

  12. Xue H, Chen Q, Jiang F, Yuan D, Lv G, Liang L, Liu L, Hong M (2016) A regenerative metal–organic framework for reversible uptake of Cd (ii): from effective adsorption to in situ detection. Chem Sci 7:5983–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng X, Fryxell GE, Wang L-Q, Kim AY, Liu J, Kemner KM (1997) Functionalized monolayers on ordered mesoporous supports. Science 276:923–926

    Article  CAS  Google Scholar 

  14. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2017) Highly efficient simultaneous adsorption of Cd (II), Hg (II) and As (III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization. New J Chem 41:8905–8919

    Article  CAS  Google Scholar 

  15. Huang N, Zhai L, Xu H, Jiang D (2017) Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J Am Chem Soc 139:2428–2434

    Article  CAS  PubMed  Google Scholar 

  16. Amarasinghe B, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309

    Article  CAS  Google Scholar 

  17. Bandehali S, Parvizian F, Moghadassi A, Hosseini S (2019) copper and lead ions removal from water by new PEI based NF membrane modified by functionalized POSS nanoparticles. J Polym Res 26:211

    Article  CAS  Google Scholar 

  18. Li L, Wang Z, Ma P, Bai H, Dong W, Chen M (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu (II) in aqueous solution. J Polym Res 22:150

    Article  Google Scholar 

  19. Hao Y-M, Man C, Hu Z-B (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184:392–399

    Article  CAS  PubMed  Google Scholar 

  20. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Reviews 4:37–59

    Article  Google Scholar 

  21. Veli S, Alyüz B (2007) Adsorption of Copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149:226–233

    Article  CAS  PubMed  Google Scholar 

  22. Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562–3582

    Article  CAS  Google Scholar 

  23. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  24. Lingamdinne LP, Chang Y-Y, Yang J-K, Singh J, Choi E-H, Shiratani M, Koduru JR, Attri P (2017) Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem Eng J 307:74–84

    Article  CAS  Google Scholar 

  25. Li J, Zheng L, Liu H (2017) A novel carbon aerogel prepared for adsorption of Copper (II) ion in water. J Porous Mater 24:1575–1580

    Article  CAS  Google Scholar 

  26. Nayak A, Bhushan B, Gupta V, Sharma P (2017) Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions. J Colloid Interface Sci 493:228–240

    Article  CAS  PubMed  Google Scholar 

  27. Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C (2018) A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun 9:1–9

    Article  Google Scholar 

  28. Asadi P, Falsafin M, Dinari M (2021) Construction of new covalent organic frameworks with benzimidazole moiety as Fe3+ selective fluorescence chemosensors. J Mol Struct 1227:129546

    Article  CAS  Google Scholar 

  29. Rengaraj A, Haldorai Y, Puthiaraj P, Hwang SK, Ryu T, Shin J, Han Y-K, Ahn W-S, Huh YS (2017) Covalent triazine polymer–Fe3O4 nanocomposite for strontium ion removal from seawater. Ind Eng Chem Res 56:4984–4992

    Article  CAS  Google Scholar 

  30. Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y (2015) 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137:8352–8355

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41:2083–2094

    Article  CAS  PubMed  Google Scholar 

  32. Dinari M, Mokhtari N, Taymouri S, Arshadi M (2020) Abbaspourrad, Covalent polybenzimidazole-based triazine frameworks: A robust carrier for non-steroidal anti-inflammatory drugs. Mater Sci Eng C 108:110482

    Article  CAS  Google Scholar 

  33. Dinari M, Jamshidian F (2021) Preparation of MIL-101-NH2 MOF/triazine based covalent organic framework hybrid and its application in acid blue 9 removals. Polymer 215:123383

    Article  CAS  Google Scholar 

  34. Liao Y-T, Ishiguro N, Young AP, Tsung C-K, Wu KC-W (2020) Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Appl Catal B 270:118805

    Article  CAS  Google Scholar 

  35. Liao Y-T, Matsagar BM, Wu KC-W (2018) Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain Chem Eng 6:13628–13643

    Article  CAS  Google Scholar 

  36. Chueh C-C, Chen C-I, Su Y-A, Konnerth H, Gu Y-J, Kung C-W, Wu KC-W (2019) Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J Mater Chem A 7:17079–17095

    Article  CAS  Google Scholar 

  37. Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh F-K, Wu KC-W (2020) Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 416:213319

    Article  CAS  Google Scholar 

  38. Lee S-P, Mellon N, Shariff AM, Leveque J-M (2018) Geometry variation in porous covalent triazine polymer (CTP) for CO2 adsorption. New J Chem 42:15488–15496

    Article  CAS  Google Scholar 

  39. Nouruzi N, Dinari M, Mokhtari N, Farajzadeh M, Gholipour B, Rostamnia S (2020) Selective catalytic generation of hydrogen over covalent organic polymer supported Pd nanoparticles (COP-Pd). Molecular Catalysis 493:111057

    Article  CAS  Google Scholar 

  40. Dinari M, Hatami M (2019) Novel N-riched crystalline covalent organic framework as a highly porous adsorbent for effective cadmium removal. J Environ Chem Eng 7:102907

    Article  Google Scholar 

  41. Dindar MH, Yaftian MR, Rostamnia S (2015) Potential of functionalized SBA-15 mesoporous materials for decontamination of water solutions from Cr (VI), As (V) and Hg (II) ions. J Environ Chem Eng 3:986–995

    Article  CAS  Google Scholar 

  42. Raghu A, Gadaginamath G, Aminabhavi TM (2005) Synthesis and characterization of novel polyurethanes based on 1, 3-bis (hydroxymethyl) benzimidazolin‐2‐one and 1, 3‐bis (hydroxymethyl) benzimidazolin‐2‐thione hard segments. J Appl Polym Sci 98:2236–2244

    Article  CAS  Google Scholar 

  43. Lim DJ, Marks NA, Rowles MR (2020) Universal Scherrer equation for graphene fragments. Carbon 162:475–480

    Article  CAS  Google Scholar 

  44. Miranda M, Sasaki J (2018) The limit of application of the Scherrer equation. Acta Crystallographica Section A: Foundations Advances 74:54–65

    CAS  Google Scholar 

  45. Mokhtari N, Taymouri S, Mirian M, Dinari M (2020) Covalent triazine-based polyimine framework as a biocompatible pH-dependent sustained-release nanocarrier for sorafenib: An in vitro approach. J Mol Liq 297:111898

    Article  CAS  Google Scholar 

  46. Dombrowski RJ, Lastoskie CM, Hyduke DR (2001) The Horvath–Kawazoe method revisited. Colloids Surf A 187:23–39

    Article  Google Scholar 

  47. Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2 + unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  Google Scholar 

  48. Abd El-Magied MO, Tolba AA, El-Gendy HS, Zaki SA, Atia AA (2017), Studies on the recovery of Th (IV) ions from nitric acid solutions using amino-magnetic glycidyl methacrylate resins and application to granite leach liquors, Hydrometallurgy, 169: 89–98

  49. Lingamdinne LP, Koduru JR, Chang Y-Y, Karri RR (2018) Process optimization and adsorption modeling of Pb (II) on nickel ferrite-reduced graphene oxide nanocomposite. J Mol Liq 250:202–211

    Article  CAS  Google Scholar 

  50. Jinendra U, Kumar J, Nagabhushana B, Raghu AV, Bilehal D (2019) Facile synthesis of CoFe2O4 nanoparticles and application in removal of malachite green dye. Green Mater 7:137–142

    Article  Google Scholar 

  51. Shahwan T (2015) Lagergren equation: Can maximum loading of sorption replace equilibrium loading? Chem Eng Res Des 96:172–176

    Article  CAS  Google Scholar 

  52. Ngah WW, Hanafiah M (2008) Adsorption of Copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies. Biochem Eng J 39:521–530

    Article  Google Scholar 

  53. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I (2017) Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J 326:1145–1158

    Article  CAS  Google Scholar 

  54. Ahsaine HA, Zbair M, Anfar Z, Naciri Y, Alem NE, Ezahri M (2018) Cationic dyes adsorption onto high surface area ‘almond shell’activated carbon: kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry 8:121–132

    Article  Google Scholar 

  55. Ahsaine HA, Zbair M, Haouti RE (2017) Mesoporous treated sewage sludge as outstanding low-cost adsorbent for cadmium removal. Desalin Water Treat 85:330–338

    Article  Google Scholar 

  56. Aoudj S, Khelifa A, Drouiche N, Belkada R, Miroud D (2015) Simultaneous removal of chromium (VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode. Chem Eng J 267:153–162

    Article  CAS  Google Scholar 

  57. Ahmad M, Manzoor K, Ahmad S, Ikram S (2018) Preparation, kinetics, thermodynamics, and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu (II) adsorbent. J Chem Eng Data 63:1905–1916

    Article  CAS  Google Scholar 

  58. Nabi SA, Shahadat M, Shalla AH, Khan AM (2011) Removal of heavy metals from synthetic mixture as well as pharmaceutical sample via cation exchange resin modified with rhodamine B: its thermodynamic and kinetic studies. CLEAN–Soil Air Water 39:1120–1128

    Article  CAS  Google Scholar 

  59. Chen C, Li F, Guo Z, Qu X, Wang J, Zhang J (2019) Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloids Surf A 568:334–344

    Article  CAS  Google Scholar 

  60. Yang F, Zhang S, Li H, Li S, Cheng K, Li J-S, Tsang DC (2018) Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal. Chem Eng J 348:191–201

    Article  CAS  Google Scholar 

  61. Rengaraj S, Kim Y, Joo CK, Yi J (2004) Removal of Copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium. J Colloid Interface Sci 273:14–21

    Article  CAS  PubMed  Google Scholar 

  62. Ge Y, Cui X, Kong Y, Li Z, He Y, Zhou Q (2015) Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: synthesis and evaluation. J Hazard Mater 283:244–251

    Article  CAS  PubMed  Google Scholar 

  63. Thanh DN, Novák P, Vejpravova J, Vu HN, Lederer J, Munshi T (2018) Removal of Copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. J Magn Magn Mater 456:451–460

    Article  CAS  Google Scholar 

  64. Yang Z, Chai Y, Zeng L, Gao Z, Zhang J, Ji H (2019), Efficient Removal of Copper Ion from Wastewater Using a Stable Chitosan Gel Material, Molecules, 24: 4205

  65. Ngah WW, Endud C, Mayanar R (2002) Removal of Copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50:181–190

    Article  CAS  Google Scholar 

  66. Taskin OS, Ersoy N, Aksu A, Kiskan B, Balkis N, Yagci Y (2016) Melamine-based microporous polymer for highly efficient removal of Copper (II) from aqueous solution. Polym Int 65:439–445

    Article  CAS  Google Scholar 

  67. Melo DQ, Neto VO, Oliveira JT, Barros AL, Gomes EC, Raulino GS, Longuinotti E, Nascimento RF (2013) Adsorption equilibria of Cu2+, Zn2+, and Cd2+ on EDTA-functionalized silica spheres. J Chem Eng Data 58:798–806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Research Council of Isfahan University of Technology (IUT), Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Dinari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinari, M., Mokhtari, N. & Hatami, M. Covalent triazine based polymer with high nitrogen levels for removal of copper‎‎ (II) ions ‎from aqueous solutions. J Polym Res 28, 119 (2021). https://doi.org/10.1007/s10965-021-02463-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02463-8

Keywords

Navigation