Skip to main content
Log in

Iron (III) cross-linked thermoplastic nitrile butadiene elastomer with temperature-adaptable self-healing property

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Fe cross-linked thermoplastic carboxylated nitrile butadiene rubber (XNBR) materials using Fe-COOH coordination as dynamic cross-links are reported. The transparent and brown Fe cross-linked XNBR (Fe/XNBR) elastomer was prepared by drying of Fe/XNBR organogels, which were fabricated by simple mixing of Fe3+ ethanol solution and XNBR dioxane solution. Tensile tests showed that only a small amount of Fe3+ ions (e.g., COOH/Fe=1/0.086, mol/mol) made the Fe/XNBR had even better tensile strength and stretchability than 2 phr sulphur vulcanized XNBR. Dynamic mechanical analysis demonstrated that the Fe-COOH interaction not only increased the moduli at higher temperatures, but also made the glass transition temperature high-temperature-shifted. In-situ infrared spectra measurements suggested that higher temperatures (e.g, 100°C) generated more trifunctional Fe-COOH cross-links and made the Fe-COOH interaction highly dynamic. The dynamic nature of the Fe-COOH interaction and generation of more trifunctional cross-links at high temperatures endowed fast self-healing and re-molding properties to the Fe/XNBR elastomers. Our result as a proof-of-concept illustrated a simple and cost-efficient way to fabricate self-healable thermoplastic elastomers using metal-ligand coordination in commercial rubbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tosaka M, Kawakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39(15):5100–5105

    CAS  Google Scholar 

  2. Deng F, Ito M, Noguchi T, Wang L, Ueki H, Niihara K-i, Kim YA, Endo M, Zheng Q-S (2011) Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 5(5):3858–3866

    CAS  PubMed  Google Scholar 

  3. Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2009) Green strength of natural rubber: The origin of the stress-strain behavior of natural rubber. J Appl Polym Sci 111(4):2127–2133

    CAS  Google Scholar 

  4. Rasid HM, Azhar NHA, Yusoff SFM (2017) Physicochemical properties of liquid natural rubber bearing fluoro groups for hydrophobic surfaces. J Polym Res 24(7):106

    Google Scholar 

  5. Zhang X, Lu C, Liang M (2008) Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber. J Polym Res 16(4):411–419

    Google Scholar 

  6. Hamed Gary R (2000) Reinforcement of rubber. Rubber Chem Technol 73(3):524–533

    CAS  Google Scholar 

  7. Mott PH, Roland CM (1996) Elasticity of natural rubber networks. Macromolecules 29(21):6941–6945

    CAS  Google Scholar 

  8. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7):955–965

    CAS  Google Scholar 

  9. Zhou Z, Liu S, Gu L (2001) Studies on the strength and wear resistance of tetrapod-shaped ZnO whisker–reinforced rubber composites. J Appl Polym Sci 80(9):1520–1525

    CAS  Google Scholar 

  10. Imbernon L, Norvez S (2016) From landfilling to vitrimer chemistry in rubber life cycle. Eur Polym J 82:347–376

    CAS  Google Scholar 

  11. Chen Y, Tang Z, Liu Y, Wu S, Guo B (2019) Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links. Macromolecules 52(10):3805–3812

    CAS  Google Scholar 

  12. Yi Fang, Maosheng Zhan, Ying Wang (2001) The status of recycling of waste rubber. Mater Des 22(2):123–128

    Google Scholar 

  13. Chino K, Ashiura M (2001) Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 34(26):9201–9204

    CAS  Google Scholar 

  14. Polgar LM, van Duin M, Broekhuis AA, Picchioni F (2015) Use of diels–alder chemistry for thermoreversible cross-linking of rubbers: The next step toward recycling of rubber products? Macromolecules 48(19):7096–7105

    CAS  Google Scholar 

  15. McMullin E, Rebar HT, Mather PT (2016) Biodegradable thermoplastic elastomers incorporating poss: Synthesis, microstructure, and mechanical properties. Macromolecules 49(10):3769–3779

    CAS  Google Scholar 

  16. Lian K, Zhu Y, Li W, Dai S, Chen C (2017) Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules 50(16):6074–6080

    CAS  Google Scholar 

  17. Seurer B, Coughlin EB (2008) Ethylene–propylene–silsesquioxane thermoplastic elastomers. Macromol Chem Phys 209(12):1198–1409

    CAS  Google Scholar 

  18. Wang L, Zhang Z, Chen H, Zhang S, Xiong C (2009) Preparation and characterization of biodegradable thermoplastic elastomers (PLCA/PLGA blends). J Polym Res 17(1):77–82

    CAS  Google Scholar 

  19. Eceiza A, Larrañaga M, de la Caba K, Kortaberria G, Marieta C, Corcuera MA, Mondragon I (2008) Structure–property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. J Appl Polym Sci 108(5):3092–3103

    CAS  Google Scholar 

  20. Yuan X, Sang Z, Zhao J, Zhang Z, Zhang J, Cheng J (2017) Synthesis and properties of non-isocyanate aliphatic thermoplastic polyurethane elastomers with polycaprolactone soft segments. J Polym Res 24(6):88

    Google Scholar 

  21. Roh JH, Roy D, Lee WK, Gergely AL, Puskas JE, Roland CM (2015) Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers. Polymer 56:280–283

    CAS  Google Scholar 

  22. Yan M, Cao L, Xu C, Chen Y (2019) Fabrication of “Zn2+ salt-bondings” cross-linked SBS-g-COOH/ZnO composites: Thiol–ene reaction modification of SBS, structure, high modulus, and shape memory properties. Macromolecules 52(11):4329–4340

    CAS  Google Scholar 

  23. Hsu Y-G, Tu L-C, Lin K-H (2001) Hybrid materials derived from modified styrene-butadiene-styrene copolymer (SBS) and silica through the sol-gel process. J Polym Res 8(1):37–47

    CAS  Google Scholar 

  24. Ocando C, Fernández R, Tercjak A, Mondragon I, Eceiza A (2013) Nanostructured thermoplastic elastomers based on SBS triblock copolymer stiffening with low contents of epoxy system. Morphological behavior and mechanical properties. Macromolecules 46(9):3444–3451

    CAS  Google Scholar 

  25. Hsu Y-G, Wang G-R, Lin K-H (2001) On the hydrosilation of SBS and the properties of hybrid materials from hydrosilated SBS and silica. J Polym Res 8(2):133–141

    CAS  Google Scholar 

  26. Huang D-C, Lin Y-C, Tsiang RC-C (1995) Synthesis of SBS thermoplastic block copolymers in cyclohexane in the presence of diethylether used as a structure modifier. J Polym Res 2(2):91–98

    CAS  Google Scholar 

  27. Grindy SC, Learsch R, Mozhdehi D, Cheng J, Barrett DG, Guan Z, Messersmith PB, Holten-Andersen N (2015) Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat Mater 14(12):1210–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li L, Yan B, Yang J, Chen L, Zeng H (2015) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater 27(7):1294–1299

    CAS  PubMed  Google Scholar 

  29. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci USA 108(7):2651–2655

    CAS  PubMed  Google Scholar 

  30. Mozhdehi D, Ayala S, Cromwell OR, Guan Z (2014) Self-healing multiphase polymers via dynamic metal-ligand interactions. J Am Chem Soc 136(46):16128–16131

    CAS  PubMed  Google Scholar 

  31. Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14(2):297–301

    CAS  PubMed  Google Scholar 

  32. Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, Zhu L, Ma Q, Wang Y, Weng X, Ossipov DA (2017) Self-healing silk fibroin-based hydrogel for bone regeneration: Dynamic metal-ligand self-assembly approach. Adv Funct Mater 27(37):1700591

    Google Scholar 

  33. Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, Xu J, Kurosawa T, Gu X, Wang C, He M, Chung JW, Bao Z (2016) Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc 138(18):6020–6027

    CAS  PubMed  Google Scholar 

  34. Filippidi E, Cristiani TR, Eisenbach CD, Waite JH, Israelachvili JN, Ahn BK, Valentine MT (2017) Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358(6362):502–505

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang Z, Huang J, Guo B, Zhang L, Liu F (2016) Bioinspired engineering of sacrificial metal–ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules 49(5):1781–1789

    CAS  Google Scholar 

  36. Harris RD, Auletta JT, Motlagh SAM, Lawless MJ, Perri NM, Saxena S, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2013) Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Lett 2(12):1095–1099

    CAS  Google Scholar 

  37. Wegner SV, Schenk FC, Witzel S, Bialas F, Spatz JP (2016) Cobalt cross-linked redox-responsive PEG hydrogels: From viscoelastic liquids to elastic solids. Macromolecules 49(11):4229–4235

    CAS  Google Scholar 

  38. Mozhdehi D, Neal JA, Grindy SC, Cordeau Y, Ayala S, Holten-Andersen N, Guan Z (2016) Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks. Macromolecules 49(17):6310–6321

    CAS  Google Scholar 

  39. Langford CH, Gray HB (1966) Ligand substitution processes. Benjamin Inc, WA

    Google Scholar 

  40. Zhou X, Wang L, Wei Z, Weng G, He J (2019) An adaptable tough elastomer with moisture-triggered switchable mechanical and fluorescent properties. Adv Funct Mater 29(34):1903543

    Google Scholar 

  41. Zhang L, Liu Z, Wu X, Guan Q, Chen S, Sun L, Guo Y, Wang S, Song J, Jeffries EM, He C, Qing FL, Bao X, You Z (2019) A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv Mater 31(23):1901402

    Google Scholar 

  42. Lai JC, Li L, Wang DP, Zhang MH, Mo SR, Wang X, Zeng KY, Li CH, Jiang Q, You XZ, Zuo JL (2018) A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat Commun 9(1):2725

    PubMed  PubMed Central  Google Scholar 

  43. Wei Z, Thanneeru S, Margaret Rodriguez E, Weng G, He J (2020) Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. Soft Matter 16(9):2276–2284

    CAS  PubMed  Google Scholar 

  44. Zhang Q, Niu S, Wang L, Lopez J, Chen S, Cai Y, Du R, Liu Y, Lai JC, Liu L, Li CH, Yan X, Liu C, Tok JB, Jia X, Bao Z (2018) An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv Mater 30(33):1801435

    Google Scholar 

  45. Lai JC, Jia XY, Wang DP, Deng YB, Zheng P, Li CH, Zuo JL, Bao Z (2019) Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat Commun 10(1):1164

    PubMed  PubMed Central  Google Scholar 

  46. Yin Q-Y, Dai C-H, Chen H, Gou K, Guan H-Z, Wang P-H, Jiang J-T, Weng G-S (2020) Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J Polym Sci: https://doi.org/10.1007/s10118-10021-12517-z

    Article  Google Scholar 

  47. Li CH, Wang C, Keplinger C, Zuo JL, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You XZ, Bao Z (2016) A highly stretchable autonomous self-healing elastomer. Nat Chem 8(6):618–624

    CAS  PubMed  Google Scholar 

  48. Basu D, Das A, Stöckelhuber KW, Jehnichen D, Formanek P, Sarlin E, Vuorinen J, Heinrich G (2014) Evidence for an in situ developed polymer phase in ionic elastomers. Macromolecules 47(10):3436–3450

    CAS  Google Scholar 

Download references

Acknowledgements

G.W. is grateful for the financial support of Natural Science Foundation of Zhejiang Province (grant No. LY19E030002), Ningbo Municipal Science and Technology Bureau (grant No. 2019A610133) and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengsheng Weng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional  claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Cao, X., Gou, K. et al. Iron (III) cross-linked thermoplastic nitrile butadiene elastomer with temperature-adaptable self-healing property. J Polym Res 28, 97 (2021). https://doi.org/10.1007/s10965-021-02459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02459-4

Keywords

Navigation