Skip to main content

Advertisement

Log in

Dielectric and optical properties of alumina and silica nanoparticles dispersed poly(methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Dielectric behaviour of the polymer nanocomposite (PNC) films comprise alumina (Al2O3) and silica (SiO2) nanoparticles (1, 3, and 5 wt%) dispersed in poly(methyl methacrylate) (PMMA) matrix was investigated in the frequency span of 20 Hz to 1 MHz at 30 °C and also with temperature variation (30–60 °C) for the 3 wt% nanofillers containing PNC films. Some changes in the dielectric permittivity and electrical conductivity were observed with the increase of nanofiller content, frequency variation, and rise in temperature of these films. Electric modulus spectra confirmed a broad relaxation peak at the lower frequencies for the Al2O3 loaded PNC films which attribute to the PMMA bulky side ester groups rotation, whereas this relaxation was not observed for the SiO2 filled PNC films in the same experimental frequency range. The UV–Vis absorbance, transmittance, and reflectance spectra of these PNCs showed a gradual variation with the increase of Al2O3 and SiO2 contents in the films. The energy bandgap decreases, whereas the Urbach energy, refractive indices, and optical conductivity enhance with the increase of filler concentration in these composites. The X-ray diffraction (XRD) study revealed the predominantly amorphous nature of these materials and the homogeneity of the hybrid was evidenced by their SEM images. The energy dispersive X-Ray (EDX) mapping revealed the purity of these hybrid composites. The results demonstrated that these PNC films are low permittivity polymeric nanodielectrics (PNDs), and their controllable optical parameters with the filler contents could be technologically important in the design and development of some advanced microelectronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tanaka T, Imai T (2017) Advanced Nanodielectrics: Fundamentals and Applications. Jenny Stanford Publishing, New York

    Google Scholar 

  2. Tan DQ (2019) Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv Funct Mater 30:1808567

    Google Scholar 

  3. Konstantinou AC, Patsidis AC, Psarras GC (2020) Boron nitride/epoxy resin nanocomposites: development, characterization and functionality. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09933-z

    Article  Google Scholar 

  4. Namouchi F, Smaoui H, Fourati N, Zerrouki C, Guermazi H, Bonnet JJ (2009) Investigation on electrical properties of thermally aged PMMA by combined use of FTIR and impedance spectroscopies. J Alloys Compd 469:197–202

    CAS  Google Scholar 

  5. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci: Mater Electron 30:12275–12294

    CAS  Google Scholar 

  6. Morsi MA, Abdelaziz M, Oraby AH, Mokhles I (2019) Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J Phys Chem Solids 125:103–114

    CAS  Google Scholar 

  7. Tsonos C, Zois H, Kanapitsas A, Soin N, Siores E, Peppas GD, Pyrgioti EC, Sanida A, Stavropoulos SG, Psarras GC (2019) Polyvinylidene fluoride/magnetite nanocomposites: Dielectric and thermal response. J Phys Chem Solids 129:378–386

    CAS  Google Scholar 

  8. Choudhary S, Sengwa RJ (2018) ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr Appl Phys 18:1041–1058

    Google Scholar 

  9. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater 2:162–175

    CAS  Google Scholar 

  10. Soliman TS, Rashad AM, Ali IA, Khater SI, Elkalashy SI (2020) Investigation of linear optical parameters and dielectric properties of polyvinyl alcohol/ZnO nanocomposite films. Phys Status Solidi a 217:2000321

    CAS  Google Scholar 

  11. Sengwa RJ, Dhatarwal P, Choudhary S (2020) A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater Today Commun 25:101380

    CAS  Google Scholar 

  12. Brandrup J, Immergut EH, Grulke EA (1999) Polymer Handbook, 4th edn. Wiley Interscience, New York

    Google Scholar 

  13. Gross S, Camozzoa D, Noto VD, Armelao L, Tondello E (2007) PMMA: A key macromolecular component for dielectric low-κ hybrid inorganic–organic polymer films. Eur Poylm J 43:673–696

    CAS  Google Scholar 

  14. Alzarrug FA, Dimitrijević MM, Heinemann RMJ, Radojević V, Stojanović DB, Uskoković PS, Aleksić R (2015) The use of different alumina fillers for improvement of the mechanical properties of hybrid PMMA composites. Mater Des 86:575–581

    CAS  Google Scholar 

  15. Cierech M, Osica I, Kolenda A, Wojnarowicz J, Szmigiel D, Łojkowski W, Kurzydłowski K, Ariga K, Nastalska EM (2018) Mechanical and physicochemical properties of newly formed ZnO-PMMA nanocomposites for denture bases. Nanomaterials 8:305

    PubMed Central  Google Scholar 

  16. Salman AD, Jani GH, Fatalla AA (2017) Comparative study of the effect of incorporating SiO2 nano-particles on properties of poly methyl methacrylate denture bases. Biomed Pharmacol J 10:1525–1535

    Google Scholar 

  17. Rösner P, Hachenberg J, Samwer K, Wehn R, Lunkenheimer P, Loidl A, Süske E, Scharf T, Krebs H-U (2006) Comparison of mechanical and dielectric relaxation processes in laser-deposited poly(methyl methacrylate) films. New J Phys 8:89

    Google Scholar 

  18. Mauro AD, Cantarella M, Nicotra G, Pellegrino G, Gulino A, Brundo MV, Privitera V, Impellizzeri G (2017) Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Sci Rep 7:40895

    PubMed  PubMed Central  Google Scholar 

  19. Ali U, Abd Karim KJB, Buang NA (2015) A Review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55:678–705

    CAS  Google Scholar 

  20. Shi Z, Song L, Zhang T (2019) Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers. J Infrared Millim Te 40:80–91

    CAS  Google Scholar 

  21. Otsuka T, Chujo Y (2010) Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals. Polym J 42:58–65

    CAS  Google Scholar 

  22. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    CAS  Google Scholar 

  23. Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites. J Polym Res 25:116

    Google Scholar 

  24. Abutalib MM, Rajeh A (2020) Influence of Fe3O4 nanoparticles on the optical, magnetic and electrical properties of PMMA/PEO composites: Combined FT-IR/DFT for electrochemical applications. J Organometallic Chem 920:121348

    CAS  Google Scholar 

  25. Al-Muntaser AA, Abdelghany AM, Abdelrazek EM, Elshahawy AG (2020) Enhancement of optical and electrical properties of PVC/PMMA blend films doped with Li4Ti5O12 nanoparticles. J Mater Res Technol 9:789–797

    CAS  Google Scholar 

  26. El-Gamal S, Elsayed M (2020) Synthesis, structural, thermal, mechanical, and nano-scale free volume properties of novel PbO/PVC/PMMA nanocomposites. Polymer 206:122911

    CAS  Google Scholar 

  27. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941

    CAS  Google Scholar 

  28. Dhatarwal P, Sengwa RJ (2018) Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications. Polym Bull 75:5645–5666

    CAS  Google Scholar 

  29. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370

    CAS  Google Scholar 

  30. Kuppu SV, Jeyaraman AR, Guruviah PK, Thambusamy S (2018) Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell. Curr Appl Phys 18:619–625

    Google Scholar 

  31. Fu Q, Lin G, Chen X, Yu Z, Yang R, Li M, Zeng X, Chen J (2018) Mechanically reinforced PVdF/PMMA/SiO2 composite membrane and its electrochemical properties as a separator in lithium-ion batteries. Energy Technol 6:144–152

    CAS  Google Scholar 

  32. Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A (2019) On the miscibility of PVDF/PMMA polymer blends: Thermodynamics, experimental and numerical investigations. Polym Testing 73:222–231

    CAS  Google Scholar 

  33. Tang W, Zhu T, Zhou P, Zhao W, Wang Q, Feng G, Yuan H (2011) Poly(vinylidene fluoride)/poly(methyl methacrylate)/TiO2 blown films: preparation and surface study. J Mater Sci 46:6656–6663

    CAS  Google Scholar 

  34. Zouai F, Benabid FZ, Bouhelal S, Cagiao ME, Benachour D, Calleja FJB (2017) Nanostructure and morphology of poly(vinylidene fluoride)/polymethyl (methacrylate)/clay nanocomposites: correlation to micromechanical properties. J Mater Sci 52:4345–4355

    CAS  Google Scholar 

  35. Ash BJ, Siegel RW, Schadler LS (2004) Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci 42:4371–4383

    CAS  Google Scholar 

  36. Ash BJ, Siegel RW, Schadler LS (2004) Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites. Macromolecules 37:1358–1369

    CAS  Google Scholar 

  37. Arimatéia RR, Hanken RBL, Oliveira ADB, Agrawal P, Freitas NL, Silva ES, Ito EN, Melo TJA (2019) Effect of alumina on the properties of poly(methyl methacrylate)/alumina composites obtained by melt blending. J Thermoplastic Compos Mater. https://doi.org/10.1177/0892705719843167

    Article  Google Scholar 

  38. Du XW, Fu YS, Sun J, Han X, Liu J (2006) Complete UV emission of ZnO nanoparticles in a PMMA matrix. Semicond Sci Technol 21:1202

    CAS  Google Scholar 

  39. Sarkar PK, Bhattacharjee S, Prajapat M, Roy A (2015) Incorporation of SnO2 nanoparticles in PMMA for performance enhancement of a transparent organic resistive memory device. RSC Adv 5:105661–105667

    CAS  Google Scholar 

  40. Shanmugam M, Alsalme A, Alghamdi A, Jayave R (2015) Photocatalytic properties of graphene-SnO2-PMMA nanocomposite in the degradation of methylene blue dye under direct sunlight irradiation. Mater Exp 5:319–326

    CAS  Google Scholar 

  41. Cantarella M, Sanz R, Buccheri MA, Romano L, Privitera V (2016) PMMA/TiO2 nanotubes composites for photocatalytic removal of organic compounds and bacteria from water. Mater Sci Semicond Proc 42:58–61

    CAS  Google Scholar 

  42. Javadi S, Kashani MR, Reis PNB, Balado AA (2017) Interfacial effects on dielectric properties of polymethylmethacrylate-titania microcomposites and nanocomposites. Polym Compos 38:1158–1166

    CAS  Google Scholar 

  43. Bouknaitir I, Panniello A, Teixeira SS, Kreit L, Corricelli M, Striccoli M, Costa LC, Achour ME (2019) Optical and dielectric properties of PMMA (poly(methyl methacrylate))/carbon dots composites. Polym Compos 40:E1312–E1319

    CAS  Google Scholar 

  44. Stankovic I, Matija L, Jankov M, Jeftic B, Koruga I, Koruga D (2020) Optical and structural properties of PMMA/ C60 composites with different concentrations of C60 molecules and its possible applications. J Polym Res 27:224

    CAS  Google Scholar 

  45. Han S, Huang W, Shi W, Yu J (2014) Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer. Sens Actuators B Chem 203:9–16

    CAS  Google Scholar 

  46. Ma J, Zhang H (2014) Preparation and characterization of poly(methyl methacrylate)/SiO2 organic–inorganic hybrid materials via RAFT-mediated miniemulsion polymerization. J Polym Res 21:590

    Google Scholar 

  47. Li T, Zhao G, Zhang L, Wang G, Li B, Gong J (2020) Ultralow-threshold and efficient EMI shielding PMMA/MWCNTs composite foams with segregated conductive network and gradient cells. Exp Polym Lett 14:685–703

    CAS  Google Scholar 

  48. Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR (2010) Multifunctional PMMA-Ceramic composites as structural dielectrics. Polymer 51:5823–5832

    CAS  Google Scholar 

  49. Lim WG, Lee DU, Na HG, Kim HW, Kim TW (2018) Electrical bistabilities and memory mechanisms of nonvolatile organic bistable devices based on exfoliated muscovite-type mica nanoparticle/poly(methylmethacrylate) nanocomposites. Appl Surf Sci 432:228–232

    CAS  Google Scholar 

  50. Aziz SB, Abdullah OG, Hussein AM, Ahmed HM (2017) From insulating PMMA polymer to conjugated double bond behavior: green chemistry as a novel approach to fabricate small band gap polymers. Polymers 9:626

    PubMed Central  Google Scholar 

  51. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007) The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polym J 43:3113–3127

    CAS  Google Scholar 

  52. Castrillo PD, Olmos D, González-Benito J (2009) Novel polymer composites based on a mixture of preformed nanosilica-filled poly(methyl methacrylate) particles and a diepoxy/diamine thermoset system. J Appl Polym Sci 111:2062–2070

    CAS  Google Scholar 

  53. Zheng J, Zhu R, He Z, Cheng G, Wang H, Yao K (2010) Synthesis and characterization of PMMA/SiO2 nanocomposites by in situ suspension polymerization. J Appl Polym Sci 115:1975–1981

    CAS  Google Scholar 

  54. Soni G, Srivastava S, Soni P, Kalotra P, Vijay YK (2018) Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films. Mater Res Exp 5:015302

    Google Scholar 

  55. Zhen X, Zhang L, Shi M, Li L, Cheng L, Jiao Z, Yang W, Ding Y (2020) Mechanical behavior of PMMA/SiO2 multilayer nanocomposites: experiments and molecular dynamics simulation. Macromol Res 28:266–274

    CAS  Google Scholar 

  56. Wu G, Guo S, Yin Y, Sun G, Zhong Y, You B (2018) Hollow microspheres of SiO2/PMMA nanocomposites: preparation and their application in light diffusing films. J Inorg Organomet Polym Mater 28:2701–2713

    CAS  Google Scholar 

  57. Li C, Wu J, Zhao J, Zhao D, Fan Q (2004) Effect of inorganic phase on polymeric relaxation dynamics in PMMA/silica hybrids studied by dielectric analysis. Eur Polym J 40:1807–1814

    CAS  Google Scholar 

  58. Motaung TE, Luyt AS, Saladino ML, Martino DC, Caponetti E (2012) Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding. Exp Polym Lett 6:871–881

    CAS  Google Scholar 

  59. Hussien MSA, Mohammed MI, Yahia IS (2020) Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials. Environ Sci Pollut Res 27:45225–45237

    Article  Google Scholar 

  60. Evans KA (1996) The manufacture of alumina and its use in ceramics and related applications. Key Eng Mater 122–124:489–526

    Google Scholar 

  61. Luo Y, Wu G, Liu J, Peng J, Zhu G, Gao G (2014) Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics. IEEE Trans Dielect Elect Insul 21:1824–1834

    CAS  Google Scholar 

  62. Mallakpour S, Khadem E (2015) Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog Polym Sci 51:74–93

    CAS  Google Scholar 

  63. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    CAS  PubMed  Google Scholar 

  64. Choudhary S (2016) Characterization of SiO2 nanoparticles dispersed (PVA–PEO) blend based nanocomposites as the polymeric nanodielectric materials. Indian J Eng Mater Sci 23:399–410

    CAS  Google Scholar 

  65. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly (ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604

    CAS  Google Scholar 

  66. Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353

    CAS  Google Scholar 

  67. Choudhary S (2018) Structural, morphological, thermal, dielectric and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix based polymer nanocomposites. Polym Compos 39:E1788–E1799

    CAS  Google Scholar 

  68. Choudhary S (2018) Influence of Al2O3 nanoparticles on the dielectric properties and structural dynamics of PVA-PEO blend basednanocomposites. Indian J Chem Tech 25:51–60

    CAS  Google Scholar 

  69. Dhatarwal P, Sengwa RJ (2020) Tunable β-phase crystals, degree of crystallinity, and dielectric properties of three-phase PVDF/PEO/SiO2 hybrid polymer nanocomposites. Mater Res Bull 129:110901

    CAS  Google Scholar 

  70. Dhatarwal P, Sengwa RJ (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26:196

    Google Scholar 

  71. Singh D, Singh NL, Kulriya P, Tripathi A, Phase DM (2010) AC electrical and structural properties of polymethylmethacrylate/aluminum composites. J Compos Mater 44:3165–3178

    CAS  Google Scholar 

  72. Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR (2009) Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectric. Appl Phys A 94:843–852

    CAS  Google Scholar 

  73. Lavina S, Negro E, Pace G, Gross S, Depaoli G, Vidali M, Noto VD (2007) Dielectric low-k composite films based on PMMA, PVC and methylsiloxane-silica: Synthesis, characterization and electrical properties. J Non-Crystal Solids 353:2878–2888

    CAS  Google Scholar 

  74. Abbas YM, Hasan AA (2014) Investigation of the dielectric properties of Sn – doped PMMA/PVA blends. Iraqi J Phys 12:105–112

    Google Scholar 

  75. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659

    CAS  Google Scholar 

  76. Tsikriteas ZM, Manika GC, Patsidis AC, Psarras GC (2020) Probing the multifunctional behaviour of barium zirconate/barium titanate/epoxy resin hybrid nanodielectrics. J Therm Anal Calorim 142:231–243

    CAS  Google Scholar 

  77. Dhatarwal P, Sengwa RJ (2020) Enhanced dielectric properties of the ZnO and TiO2 nanoparticles dispersed poly(vinyl pyrrolidone) matrix-based nanocomposites. J Macromol Sci B 59:853–866

    CAS  Google Scholar 

  78. Dhatarwal P, Choudhary S, Sengwa RJ (2020) Effectively nanofiller concentration tunable dielectric properties of PVP/SnO2 nanodielectrics. Mater Lett 273:127913

    CAS  Google Scholar 

  79. Choudhary S, Dhatarwal P, Sengwa RJ (2020) Dielectric dispersion and electrical conductivity of amorphous PVP–SiO2 and PVP–Al2O3 polymeric nanodielectric films. Indian J Chem Tech 27:201–209

    CAS  Google Scholar 

  80. Aziz SB, Abdullah OGh, Brza MA, Azawy AK, Tahir DA (2019) Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys 15:102776

    Google Scholar 

  81. Dhatarwal P, Sengwa RJ (2020) Structural, dielectric dispersion and relaxation, and optical properties of multiphase semicrystalline PEO/PMMA/ZnO nanocomposites. Compos Interfaces. https://doi.org/10.1080/09276440.2020.1813474

    Article  Google Scholar 

  82. Soliman TS, Vshivkov SA, Elkalashy SI (2020) Structural, thermal, and linear optical properties of SiO2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films. Polym Compos 41:3340–3350

    CAS  Google Scholar 

  83. Abutalib MM, Rajeh A (2020) Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications. Polym Testing 91:106803

    CAS  Google Scholar 

  84. Rajesh K, Crasta V, Kumar NBR, Shetty G, Rekha PD (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26:99

    Google Scholar 

  85. Soliman TS, Vshivkov SA, Elkalashy SI (2020) Structural, linear and nonlinear optical properties of Ni nanoparticles – Polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt Mater 107:110037

    CAS  Google Scholar 

  86. Alsaad AM, Ahmad AA, Dairy ARAl, Al-anbar AS, Al-Bataineh QM (2020) Spectroscopic characterization of optical and thermal properties of (PMMA-PVA) hybrid thin films doped with SiO2 nanoparticles. Results Phys 19:103463

    Google Scholar 

  87. El Sayed AM, Ibrahim A (2014) Structural and optical characterizations of spin coated cobalt-doped cadmium oxide nanostructured thin films. Mater Sci Semicond Process 26:320–328

    Google Scholar 

  88. Pankove JI (1975) Optical Processes in Semiconductors. Dover, New York

    Google Scholar 

Download references

Acknowledgments

The University Grants Commission of India, New Delhi is gratefully acknowledged for SAP DRS-II programme grant No. F.530/12/DRS-II/2016(SAP-I) for the experimental facilities to RJS. One of the authors (PD) thanks the CSIR, New Delhi for the award of a postdoctoral research associate fellowship No. 09/098 (0133)18 EMR–I dtd.18.04.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhatarwal, P., Choudhary, S. & Sengwa, R.J. Dielectric and optical properties of alumina and silica nanoparticles dispersed poly(methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies. J Polym Res 28, 63 (2021). https://doi.org/10.1007/s10965-020-02406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02406-9

Keywords

Navigation