Skip to main content

Advertisement

Log in

Excellent memory performance of poly (1,6-hexanediol adipate) based shape memory polyurethane filament over a range of thermo-mechanical parameters

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Shape memory filaments have significant implications in smart wearable textiles, biomedical sutures, and additive manufacturing. However, the deterioration of shape memory performance over a range of temperature and strain limits their use in many high-end applications. This investigation reports the shape memory properties of segmented polyurethane filament and its detailed chemical and thermo-mechanical characterization. Shape memory polyurethane (SMPU) based on poly(1,6-hexanediol adipate) (PHA), 4,4′-diphenylmethane diisocyanate (MDI), and 1,4-butanediol (BDO) shows the transition temperature near body temperature. Hard segment and soft segment content in SMPU is 28.5% and 71.5% by weight. SMPU filament exhibited excellent shape recovery (~ 98%) and higher shape fixity (~ 80%) at a strain of 20%, 40%, and 60% and temperature of 30 ℃ and 50 ℃. Results have been supported by thermal and X-ray analysis. The cause of high fixity has been discussed in detail. Experimental results indicated higher crystallization and melting enthalpy. The cyclic test of SMPU filament showed almost complete shape recovery with no change in shape fixity under different thermo-mechanical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mather PT, Luo X et al (2009) Shape Memory Polymer Research. Annu Rev Mater Res 39:445–471. https://doi.org/10.1146/annurev-matsci-082908-145419

    Article  CAS  Google Scholar 

  2. Hu J, Meng H et al (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21:053001. https://doi.org/10.1088/0964-1726/21/5/053001

    Article  CAS  Google Scholar 

  3. Sokolowski W, Metcalfe A et al (2007) Medical applications of shape memory polymers. Biomed Mater 2:S23–S27. https://doi.org/10.1088/1748-6041/2/1/S04

    Article  CAS  PubMed  Google Scholar 

  4. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001

    Article  CAS  Google Scholar 

  5. Leng J, Lan X et al (2011) Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 56:1077–1135. https://doi.org/10.1016/j.pmatsci.2011.03.001

    Article  CAS  Google Scholar 

  6. Gupta P, Narayana H et al (2020) Shape memory polymers for design of smart stocking. In: Gefen A (ed) Innovations and Emerging Technologies in Wound Care. Elsevier, Academic Press, pp 141–154.

    Chapter  Google Scholar 

  7. Kumar B, Hu J et al (2016) A smart orthopedic compression device based on a polymeric stress memory actuator. Mater Des 97:222–229. https://doi.org/10.1016/j.matdes.2016.02.092

    Article  CAS  Google Scholar 

  8. Kumar B, Hu J et al (2016) Smart medical stocking using memory polymer for chronic venous disorders. Biomaterials 75:174–181. https://doi.org/10.1016/j.biomaterials.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  9. Gong T, Li W et al (2012) Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater 8:1248–1259. https://doi.org/10.1016/j.actbio.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  10. Lendlein A, Jiang H et al (2005) Light-induced shape-memory polymers. Nature 434:879–882. https://doi.org/10.1038/nature03496

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Hu J et al (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8:2509–2517. https://doi.org/10.1039/C2SM07035A

    Article  CAS  Google Scholar 

  12. Cho JW, Kim JW et al (2005) Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes. Macromol Rapid Commun 26:412–416. https://doi.org/10.1002/marc.200400492

    Article  CAS  Google Scholar 

  13. Meng Q, Hu J et al (2007) Polycaprolactone-based shape memory segmented polyurethane fiber. J Appl Polym Sci 106:2515–2523. https://doi.org/10.1002/app.26764

    Article  CAS  Google Scholar 

  14. Meng Q, Hu J et al (2007) An electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater Struct 16:830–836. https://doi.org/10.1088/0964-1726/16/3/032

    Article  Google Scholar 

  15. Meng Q, Hu J et al (2009) The influence of heat treatment on the properties of shape memory fibers. II. Tensile properties, dimensional stability, recovery force relaxation, and thermomechanical cyclic properties. J Appl Polym Sci 111:1156–1164. https://doi.org/10.1002/app.29165

    Article  CAS  Google Scholar 

  16. Lendlein A, Kelch S (2002) Shape-Memory Polymers. Angew Chem Int Ed 41:2034–2057. https://doi.org/10.1002/1521-3773(20020617)41:12%3c2034::AID-ANIE2034%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  17. Ahmad M, Luo J et al (2011) Synthesis and Characterization of Polyurethane-Based Shape-Memory Polymers for Tailored Tg around Body Temperature for Medical Applications. Macromol Chem Phys 212:592–602. https://doi.org/10.1002/macp.201000540

    Article  CAS  Google Scholar 

  18. Meng Q, Liu J et al (2009) A smart hollow filament with thermal sensitive internal diameter. J Appl Polym Sci 113:2440–2449. https://doi.org/10.1002/app.30203

    Article  CAS  Google Scholar 

  19. Kai D, Prabhakaran MP et al (2016) Elastic poly( ε -caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed Mater 11:015007. https://doi.org/10.1088/1748-6041/11/1/015007

    Article  CAS  PubMed  Google Scholar 

  20. Meng Q, Hu J et al (2007) Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Mater Struct 16:1192–1197. https://doi.org/10.1088/0964-1726/16/4/030

    Article  CAS  Google Scholar 

  21. Ji F, Zhu Y et al (2006) Smart polymer fibers with shape memory effect. Smart Mater Struct 15:1547–1554. https://doi.org/10.1088/0964-1726/15/6/006

    Article  CAS  Google Scholar 

  22. Yang Q, Li G (2014) Investigation into stress recovery behavior of shape memory polyurethane fiber. J Polym Sci Part B: Polym Phys 52:1429–1440. https://doi.org/10.1002/polb.23582

    Article  CAS  Google Scholar 

  23. Garg H, Mohanty J et al Polyethylenimine-Based Shape Memory Polyurethane with Low Transition Temperature and Excellent Memory Performance. Macromolecular Materials and Engineering 305(8):2000215. https://doi.org/10.1002/mame.202000215

  24. Jerald Maria Antony G, Aruna ST (2018) Enhanced mechanical properties of acrylate based shape memory polymer using grafted hydroxyapatite. J Polym Res 25:120. https://doi.org/10.1007/s10965-018-1511-9

    Article  CAS  Google Scholar 

  25. Hu JL, Zeng YM et al (2003) Influence of Processing Conditions on the Microstructure and Properties of Shape Memory Polyurethane Membranes. Text Res J 73:172–178. https://doi.org/10.1177/004051750307300214

    Article  CAS  Google Scholar 

  26. Jung YC, Kim JH et al (2012) Fabrication of Transparent, Tough, and Conductive Shape-Memory Polyurethane Films by Incorporating a Small Amount of High-Quality Graphene. Macromol Rapid Commun 33:628–634. https://doi.org/10.1002/marc.201100674

    Article  CAS  PubMed  Google Scholar 

  27. Kang SM, Lee SJ, Kim BK (2012) Shape memory polyurethane foams. Express Polym Lett 6:63–69. https://doi.org/10.3144/expresspolymlett.2012.7

    Article  CAS  Google Scholar 

  28. Zhu Y, Hu J et al (2006) Development of shape memory polyurethane fiber with complete shape recoverability. Smart Mater Struct 15:1385–1394. https://doi.org/10.1088/0964-1726/15/5/027

    Article  CAS  Google Scholar 

  29. Tian X, Bai H et al (2011) Bio-inspired Heterostructured Bead-on-String Fibers That Respond to Environmental Wetting. Adv Funct Mater 21:1398–1402. https://doi.org/10.1002/adfm.201002061

    Article  CAS  Google Scholar 

  30. Garces I, Aslanzadeh S et al (2019) Effect of Moisture on Shape Memory Polyurethane Polymers for Extrusion-Based Additive Manufacturing. Materials 12:244. https://doi.org/10.3390/ma12020244

    Article  CAS  PubMed Central  Google Scholar 

  31. Zhu Y, Hu J et al (2007) Effect of steaming on shape memory polyurethane fibers with various hard segment contents. Smart Mater Struct 16:969–981. https://doi.org/10.1088/0964-1726/16/4/004

    Article  CAS  Google Scholar 

  32. Lin JR, Chen LW (1998) Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content. J Appl Polym Sci 69:1563–1574. https://doi.org/10.1002/(SICI)1097-4628(19980822)69:8%3c1563::AID-APP11%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  33. Lin JR, Chen LW (1998) Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. J Appl Polym Sci 69:1575–1586. https://doi.org/10.1002/(SICI)1097-4628(19980822)69:8%3c1575::AID-APP12%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  34. Hu JL, Ji FL et al (2005) Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions. Polym Int 54:600–605. https://doi.org/10.1002/pi.1745

    Article  CAS  Google Scholar 

  35. Revathi A, Rao S et al (2013) Effect of strain on the thermomechanical behavior of epoxy based shape memory polymers. J Polym Res 20:113. https://doi.org/10.1007/s10965-013-0113-9

    Article  CAS  Google Scholar 

  36. Narayana H, Hu J et al (2017) Stress-memory polymeric filaments for advanced compression therapy. Journal of Materials Chemistry B 5:1905–1916. https://doi.org/10.1039/C6TB03354G

    Article  CAS  PubMed  Google Scholar 

  37. Meng Q, Hu J (2008) Influence of heat treatment on the properties of shape memory fibers. I. Crystallinity, hydrogen bonding, and shape memory effect. J Appl Polym Sci 109:2616–2623. https://doi.org/10.1002/app.28363

    Article  CAS  Google Scholar 

  38. Kaursoin J, Agrawal AK (2007) Melt spun thermoresponsive shape memory fibers based on polyurethanes: Effect of drawing and heat-setting on fiber morphology and properties. J Appl Polym Sci 103:2172–2182. https://doi.org/10.1002/app.25124

    Article  CAS  Google Scholar 

  39. Trovati G, Sanches EA et al (2010) Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci 115:263–268. https://doi.org/10.1002/app.31096

  40. Rohindra D, Lata R et al (2019) Crystallization behavior in miscible blends of poly(ε-caprolactone) and poly(hexylene adipate) with similar thermal properties studied by time-resolved Fourier transform infrared spectroscopy. POLYMER CRYSTALLIZATION 2:e10037. https://doi.org/10.1002/pcr2.10037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipin Kumar.

Ethics declarations

Conflict of interest

All the authors of this manuscript do not have any financial conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Garg, H., Mohanty, J. et al. Excellent memory performance of poly (1,6-hexanediol adipate) based shape memory polyurethane filament over a range of thermo-mechanical parameters. J Polym Res 27, 382 (2020). https://doi.org/10.1007/s10965-020-02345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02345-5

Keywords

Navigation