Skip to main content

Advertisement

Log in

Synergism of graphitic-carbon nitride and electrospinning on the physico-chemical characteristics and piezoelectric properties of flexible poly(vinylidene fluoride) based nanogenerator

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, we investigated the piezoelectric performance of electrospun poly(vinylidene fluoride)/graphitic carbon nitride (PVDF/g-C3N4) nanocomposite fibers (PGN-X). Addition of g-C3N4 nanosheets improved the spinnability of nanofibers and augmented the β-phase content of PVDF. The synthesized PGN non-woven mats were flexible and easily deformable without disrupting the continuity of fibers. Upon the addition of g-C3N4, tensile strength and thermal stability of nanocomposite fibers improved significantly. A maximum voltage output of ~7.5 V was generated for PGN nanogenerator which is ~8 times more than that of PVDF nanogenerator. Also, the PGN-X nanogenerator generated current output of 0.23 μA and a power density of 0.22 μW/cm−2. Improved physico-chemical characteristics and piezoelectric performance of PGN nanogeneratoris promising and makes it suitable for portable electronic and wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Shao H, Fang J, Wang H, Lang C, Yan G, Lin T (2017) Mechanical energy-to-electricity conversion of Electron/hole-transfer agent-doped poly(Vinylidene fluoride) nanofiber webs. Macromol Mater Eng 302:1–6. https://doi.org/10.1002/mame.201600451.

    Article  Google Scholar 

  2. Chow LS, Alan M (2013) Generating renewable electrical energy using piezoelectric. In: IEEE Student Conference on Research and Developement 2013:16–17. https://doi.org/10.1109/SCOReD.2013.7002531.

  3. Manish S (2015) Piezoelectric energy harvesting in Wireless sensor networks. In: Proceedings of 2015 RAECS UIET Panjab University Chandigarh. 2015:1–6. https://doi.org/10.1109/RAECS.2015.7453339.

  4. Nechibvute A, Chawanda A, Luhanga P (2012) Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater Res 2012:1–13. https://doi.org/10.1155/2012/853481

    Article  Google Scholar 

  5. Muralt PRGPST-M, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors , actuators , and energy harvesting. MRS Bull 34:658–664. https://doi.org/10.1557/mrs2009.177

    Article  CAS  Google Scholar 

  6. Hu P, Xiong Z, Xue H, et al (2011) BaTiO3 piezoelectric microfiber composites for mechanical energy harvesting. In: International Symposium on Advanced Packaging Materials 2011: 43–46. https://doi.org/10.1109/ISAPM.2011.6105667.

  7. Dakua I, Afzulpurkar N (2013) Piezoelectric energy generation and harvesting at the Nano-scale: materials and devices. Nanomater Nanotechnol 3:21–37. https://doi.org/10.5772/56941

    Article  CAS  Google Scholar 

  8. Tiwari V, Srivastava G (2016) Enhanced dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. J Polym Res 23:1–6. https://doi.org/10.1007/s10965-016-0928-2

    Article  CAS  Google Scholar 

  9. Baji A, Mai YW, Li Q, Liu Y (2011) Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale 3:3068–3071. https://doi.org/10.1039/c1nr10467e

    Article  CAS  PubMed  Google Scholar 

  10. Odon A (2005) Voltage response of pyroelectric PVDF detector to pulse source of optical radiation. Meas Sci Rev 5:55–58

    Google Scholar 

  11. Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196–2202. https://doi.org/10.1039/c3ee24230g

    Article  CAS  Google Scholar 

  12. Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26:42–50. https://doi.org/10.1016/j.polymertesting.2006.08.003

    Article  CAS  Google Scholar 

  13. Zampetti E, Bearzotti A, Macagnano A (2014) Flexible piezoelectric transducer based on electrospun PVDF nanofibers for sensing applications. Procedia Eng 87:1509–1512. https://doi.org/10.1016/j.proeng.2014.11.585

    Article  CAS  Google Scholar 

  14. Yee WA, Kotaki M, Liu Y, Lu X (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer (Guildf) 48:512–521. https://doi.org/10.1016/j.polymer.2006.11.036

    Article  CAS  Google Scholar 

  15. Hess CM, Rudolph AR, Reid PJ (2015) Imaging the effects of annealing on the polymorphic phases of poly(vinylidene fluoride). J Phys Chem B 119:4127–4132. https://doi.org/10.1021/jp512486n

    Article  CAS  PubMed  Google Scholar 

  16. Lau K, Liu Y, Chen H, Withers R (2013) Effect of annealing temperature on the morphology and piezoresponse characterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe. Adv Condens Matter 2013:435938–435342. https://doi.org/10.1155/2013/435938

    Article  CAS  Google Scholar 

  17. Sorayani Bafqi MS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22:130–138. https://doi.org/10.1007/s10965-015-0765-8

    Article  CAS  Google Scholar 

  18. Parangusan H, Ponnamma D, Al-Maadeed MAA (2018) Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric Nanogenerators. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-017-19082-3

    Article  CAS  Google Scholar 

  19. Shao H, Fang J, Wang H, Lin T (2015) Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv 5:14345–14350. https://doi.org/10.1039/C4RA16360E

    Article  CAS  Google Scholar 

  20. Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri-Khoulenjani S, Shokrgozar MA (2017) Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog Biomater 6:113–123. https://doi.org/10.1007/s40204-017-0071-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiyong H, Yinda Z, Hele Z, Yuanyuan G, Xudong Y (2017) Mixed effect of main electrospinning parameters on the β -phase crystallinity of electrospun PVDF nanofibers. Smart Mater Struct 26:85019–85018. https://doi.org/10.1088/1361-665X/aa7245

    Article  Google Scholar 

  22. Yang L, Ji H, Zhu K, Wang J, Qiu J (2016) Dramatically improved piezoelectric properties of poly(vinylidene fluoride) composites by incorporating aligned TiO2@MWCNTs. Compos Sci Technol 123:259–267. https://doi.org/10.1016/j.compscitech.2015.11.032

    Article  CAS  Google Scholar 

  23. He L, Xia G, Sun J, Zhao Q, Song R, Ma Z (2013) Unzipped multiwalled carbon nanotubes-incorporated poly(vinylidene fluoride) nanocomposites with enhanced interface and piezoelectric β-phase. J Colloid Interface Sci 393:97–103. https://doi.org/10.1016/j.jcis.2012.10.060

    Article  CAS  PubMed  Google Scholar 

  24. Wang F, Ko SY, Park JO, Park SH, Kee CD (2015) Electroactive polymer actuator based on PVDF and graphene through electrospinning. Adv Mater Res 1105:311–314. https://doi.org/10.4028/www.scientific.net/AMR.1105.311

    Article  Google Scholar 

  25. Khalifa M, Mahendran A, Anandhan S (2016) Probing the synergism of halloysite nanotubes and electrospinning on crystallinity, polymorphism and piezoelectric performance of poly(vinylidene fluoride). RSC Adv 6:114052–114060. https://doi.org/10.1039/C6RA20599B

    Article  CAS  Google Scholar 

  26. Priya L, Jog JP (2003) Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites. J Appl Polym Sci 89:2036–2040. https://doi.org/10.1002/app.12346

    Article  CAS  Google Scholar 

  27. Wang H, Gong R, Qian X (2018) Preparation and characterization of TiO2/g-C3N4/PVDF composite membrane with enhanced physical properties. Membranes (Basel) 8:14–23. https://doi.org/10.3390/membranes8010014

    Article  CAS  Google Scholar 

  28. Zhu L, Wang Y, Hu F, Song H (2015) Structural and friction characteristics of g-C3N4/PVDF composites. Appl Surf Sci 345:349–354. https://doi.org/10.1016/j.apsusc.2015.03.197

    Article  CAS  Google Scholar 

  29. Wang M, Ju P, Zhao Y, et al (2018) In situ ion exchange synthesis of MoS2/g-C3N4 heterojunctions for highly efficient hydrogen production. 42:910–917. doi: https://doi.org/10.1039/C7NJ03483K.

  30. Xu HY, Wu LC, Zhao H, et al (2015) Synergic effect between adsorption and photocatalysis of metal-free g-C3N4 derived from different precursors. 10:1–20. doi: https://doi.org/10.1371/journal.pone.0142616.

  31. Khalifa M, Mahendran A, Anandhan S (2018) Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polym Compos:1–13. https://doi.org/10.1002/pc.24916.

  32. Ma L, Fan H, Fu K, Lei S, Hu Q, Huang H, He G (2017) Protonation of graphitic carbon nitride (g-C3N4 ) for an electrostatically self-assembling carbon@g-C3N4 core–shell nanostructure toward high hydrogen evolution. ACS Sustain Chem Eng 5:7093–7103. https://doi.org/10.1021/acssuschemeng.7b01312.

    Article  CAS  Google Scholar 

  33. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  34. Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22:699–704. https://doi.org/10.1016/S0142-9418(03)00003-5

    Article  CAS  Google Scholar 

  35. Lanceros-Mendez S, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. J Macromol Sci Part B 40:517–527

    Article  Google Scholar 

  36. Adams FV, Nxumalo EN, Krause RWM, Hoek EMV, Mamba BB (2012) Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes. J Memb Sci 405–406:291–299. https://doi.org/10.1016/j.memsci.2012.03.023

    Article  CAS  Google Scholar 

  37. Benz M, Euler WB, Gregory OJ (2001) The influence of preparation conditions on the surface morphology of poly(vinylidene fluoride) films. Langmuir 17:239–243. https://doi.org/10.1021/la001206g

    Article  CAS  Google Scholar 

  38. Ma W, Zhang J, Chen S, Wang X (2008) Crystalline phase formation of poly(vinylidene fluoride) from tetrahydrofuran/N,N-dimethylformamide mixed solutions. J Macromol Sci Part B Phys 47:434–449. https://doi.org/10.1080/00222340801954811

    Article  CAS  Google Scholar 

  39. Fabri D, Guan J, Cesàro A (1998) Crystallisation and melting behaviour of poly(3-hydroxybutyrate) in dilute solution: towards an understanding of physical gels. Thermochim Acta 321:3–16. https://doi.org/10.1016/S0040-6031(98)00433-X

    Article  CAS  Google Scholar 

  40. Atanassov A, Kostov G, Kiryakova D, Borisova-Koleva L (2014) Properties of clay nanocomposites based on poly(vinylidene fluoride-co-Hexafluoropropylene). J Thermoplast Compos Mater 27:126–141. https://doi.org/10.1177/0892705712443249

    Article  CAS  Google Scholar 

  41. Pompe G, Mäder E (2000) Experimental detection of a transcrystalline interphase in glass-fibre/polypropylene composites. Compos Sci Technol 60:2159–2167. https://doi.org/10.1016/S0266-3538(00)00120-2

    Article  CAS  Google Scholar 

  42. Wu CM, Chou MH (2016) Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos Sci Technol 127:127–133. https://doi.org/10.1016/j.compscitech.2016.03.001.

    Article  Google Scholar 

  43. Yu W, Zhao Z, Zheng W, Long B, Jiang Q, Li G, Ji X (2009) Crystallization behawior of poiyi(vinylidene fluoride)/montmoriiionite nanocomposite. Polym Eng Sci 49:491–498. https://doi.org/10.1002/pen.21308

    Article  CAS  Google Scholar 

  44. Fakhri P, Mahmood H, Jaleh B, Pegoretti A (2016) Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with au- and cu-doped graphene oxide hybrid nanofiller. Synth Met 220:653–660. https://doi.org/10.1016/j.synthmet.2016.08.008

    Article  CAS  Google Scholar 

  45. Khalifa M, Deeksha B, Mahendran A, Anandhan S (2018) Synergism of electrospinning and nano-alumina trihydrate on the polymorphism, crystallinity and piezoelectric performance of PVDF nanofibers. JOM 70:1313–1318. https://doi.org/10.1007/s11837-018-2811-6

    Article  CAS  Google Scholar 

  46. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  47. Tamang A, Ghosh SK, Garain S, Alam MM, Haeberle J, Henkel K, Schmeisser D, Mandal D (2015) DNA-assisted β-phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl Mater Interfaces 7:16143–16147. https://doi.org/10.1021/acsami.5b04161.

    Article  CAS  PubMed  Google Scholar 

  48. Shi K, Sun B, Huang X, Jiang P (2018) Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52:153–162. https://doi.org/10.1016/j.nanoen.2018.07.053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mohammed Khalifa would like to thank the Department of Metallurgical and Materials Engineering, NITK for research fellowship grant. The authors would like to thank Dr. Udaya Bhat for providing TEM facility. The authors gratefully acknowledge Ms. Rashmi, Mr. Prajwal and Mr. Palaksha for their assistance in SEM, TEM and UTM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anandhan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, M., Mahendran, A. & Anandhan, S. Synergism of graphitic-carbon nitride and electrospinning on the physico-chemical characteristics and piezoelectric properties of flexible poly(vinylidene fluoride) based nanogenerator. J Polym Res 26, 73 (2019). https://doi.org/10.1007/s10965-019-1738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1738-0

Keywords

Navigation