Skip to main content
Log in

Chemical and in vitro characterization of epoxidized natural rubber blends for biomedical applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cellprene® biomaterial is reported as an angiogenic resorbable elastomeric blend, but it has poor miscibility between polymers. Poly(isoprene) present in Cellprene® is the main component of Natural Rubber Latex, which is extracted from Hevea brasilienses trees. The epoxidation reaction of Natural Rubber not only reduces the number of double bonds but also increases the hydrophilicity of rubber. The mixing of epoxidized Poly(isoprene) with Poly (Lactic-co-Glycolic acid) is an alternative route for the preparation of miscible and biocompatible blends that can be used in Tissue Engineering. The blends developed in this work were obtained by the solvent casting method. The physico-chemical and mechanical properties of the membranes were evaluated and compared with Cellprene® showing a higher miscibility of the blend that were previously epoxidized demonstrated by the approach of the involved Tg value. Biological essays showed non-cytotoxic results with a cell viability greater than 95%. The in vitro interaction of HMV-II cells with the epoxidized blend showed specific epithelial and morphological markers after 24 h of culture. The results indicate the high viability of the epoxidized mixture for application in Tissue Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kohane DS, Langer R (2008) Polymeric biomaterials in Tissue Engineering. Pediatr Res 63:487–491

    Article  CAS  PubMed  Google Scholar 

  2. Makadia HK, Siegel SJ (2011) Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 3:1377–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moon JJ, West JL (2008) Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem 8:300–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marques DR, dos Santos LAL, Sousa VC, Sanches PRS, Macedo AV, Número de Registro de Patente: 0000221010682444, 1–3 (2013)

  5. Kim JH, Marques DR, Rodriguez R, dos Santos LAL (2014) Experimental comparative study of the histotoxicity of poly(lactic-co-glycolic acid) copolymer and poly(lactic-co-glycolic Acid)-poly(isoprene) blend. Polímeros 24:529–535

    Article  Google Scholar 

  6. Mendonça RJ, Maurício VB, Teixeira LB, Lachat JJ, Couti J (2010) Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytother Res 24:764–768

    PubMed  Google Scholar 

  7. Faller G, dos Santos LAL, Marques DR, Collares MV (2015) Development and testing of an absorbable spring for cranial expansion in rabbits. J Craniomaxillofac Surg 43:1269–1276

    Article  PubMed  Google Scholar 

  8. Zakaria Z, Islam MS, Hassan A, Haafiz MKM, Arjmandi R, Inuwa IM, Hasan M (2013) Mechanical properties and morphological characterization of PLA/Chitosan/Epoxidized Natural Rubber composites. Adv Mater Sci Eng 2013:1–7

    Article  CAS  Google Scholar 

  9. De Moares M, Silva MF, Weska RF, Beppu MM (2014) Silk fibroin and sodium alginate blend: miscibility and physical characteristics. Mater Sci Eng C Mater Biol Appl 40:85–91

    Article  CAS  Google Scholar 

  10. Yoksan R (2008) Epoxidized natural rubber for adhesive applications. Kasetsart J Nat Sci 42:325–332

    Google Scholar 

  11. Santin CK, Pinto GC, Jacobi MM (2012) Epoxidação “in situ” aplicada ao Látex de Borracha Natural. Polímeros 22:193–199

    Article  CAS  Google Scholar 

  12. Jorge RM, Ferreira MT, Picciani PH, Gomes AS, Nune RC (2009) Caracterização físico-mecânica de filmes de borracha natural epoxidada curáveis em temperatura ambiente. Polímeros 19:329–335

    Article  CAS  Google Scholar 

  13. International Organization for Standardization. ISO 527-1: Plastics – Determination of Tensile Properties – Part 1: General Principles, Suiza, 2012

  14. Cibulková Z, Polovková J, Lukes V, Klein E (2006) DSC and FTIR study of the gamma radiation effect on cis-1,4-polyisoprene. J Therm Anal Calorim 84:709–713

    Article  CAS  Google Scholar 

  15. Ng SC, Gan LH (1981) Reaction of natural rubber latex with performic acid. Eur Polym J 17:1073–1077

    Article  CAS  Google Scholar 

  16. Burfield DR, Kooi-Ling L, Kia-Sang L (1984) Analysis of epoxidized natural rubber. A comparative study of DSC, NMR, elemental analysis and direct titration methods. Polymer 25:995–998

    Article  CAS  Google Scholar 

  17. Santin CK, Hidrogenação e epoxidação como alternativa para a obtenção de novos materiais, Ph.D. Thesis, Universidade Federal Rio Grande do Sul, Brazil (2008)

  18. Rocha TLAC (2004) Estudo da modificação química de polidienos do tipo SBR e BR. Polímeros 14:318–321

    Article  CAS  Google Scholar 

  19. Canevarolo SV (2004) Técnicas de Caracterização de Polímeros. Artliber Editora, Brazil, São Paulo

    Google Scholar 

  20. Marques DR Fibras de Poli (Ácido Lático-co-Glicólico)/Poliisopreno para aplicação em engenharia de tecidos. Ph.D. Thesis, Universidade Federal Rio Grande do Sul, Brazil (2015)

  21. Marques DR, dos Santos LAL, O’Brien MA, Cartmell SH, Gough JE (2016) In vitro evaluation of poly (lactic-co-glycolic acid)/polyisoprene fibers for soft Tissue Engineering. J Biomed Mater Res Part B 105:2581–2591

    Article  CAS  Google Scholar 

  22. Stevens M P (1999) Polymer Chemistry: An Introduction. Oxford University, New York

  23. Gogolewski S (2000) Bioresorbable polymers in trauma and bone surgery. Injury 31:28–32

    Article  PubMed  Google Scholar 

  24. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y, Weiss AS (2012) Electrospun synthetic human elastin:collagen composite scaffolds for dermal Tissue Engineering. Acta Biomater 8:3714–3722

    Article  CAS  PubMed  Google Scholar 

  25. Engler JA, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Feng Y, Fang Z, Yuan W, Khan M (2012) Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small diameter vascular Tissue Engineering. Mater Sci Eng C 32:2306–2315

    Article  CAS  Google Scholar 

  27. Boer J, Ghalbzouri A, D'amore P, Hirschi K, Rouwkema J, Bezooijen R, Karperien M (2009) Cellular signaling. In: BLITTERSWIJK C (ed) Tissue engineering. Elsevier Inc, Amsterdam

    Google Scholar 

  28. Pan H, Jiang H, Chen W (2006) Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide. Biomaterials 27:3209–3220

    Article  CAS  PubMed  Google Scholar 

  29. Nodale C, Vescarelli E, D’amici S, Maffucci D, Ceccarelli S, Monti M, Benedetti PP, Romano F, Angeloni A, Marchese C (2014) Characterization of human vaginal mucosa cells for autologous in vitro cultured vaginal tissue transplantation in patients with MRKH Syndrome. Biomed Res Int 2014:1–6

    Article  CAS  Google Scholar 

  30. Lombello CB, Santos JA, Malmonge SM, Barbanti SH, Wada ML, Duek E (2002) Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials. J Mater Sci Mater Med 13:867–874

    Article  CAS  PubMed  Google Scholar 

  31. Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC (2006) Ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019

    Article  CAS  PubMed  Google Scholar 

  32. Tudorache I, Cebotari S, Sturz G, Kirsch L, Hurschler C, Hilfiker A (2007) Tissue Engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 16:567–573

    PubMed  Google Scholar 

  33. Ereno C, Guimarães SAC, Pasetto S, Herculano RD, Silva CP, Graeff CFO, Tavano O, Baffa O, Kinoshita A (2010) Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res A 95:932–939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants the CAPES (Brazil) Program. The authors greatly acknowledge CMM-UFRGS for the use of microscopy facilities and Molecular and Protein Analyzes Department of the Hospital de Clínicas de Porto Alegre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayrim Brizuela Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, N.B., Cassel, J.B., Henckes, N.A.C. et al. Chemical and in vitro characterization of epoxidized natural rubber blends for biomedical applications. J Polym Res 25, 172 (2018). https://doi.org/10.1007/s10965-018-1542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1542-2

Keywords

Navigation