Skip to main content
Log in

Development and Characterization of Natural Rubber Latex and Polylactic Acid Membranes for Biomedical Application

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Natural rubber latex from the Hevea brasiliensis has been of great importance in areas such as medicine and bioengineering, due to its angiogenic and wound healing activity. However, the biodegradability of natural rubber latex is not significant when compared to other polymers used for the development of materials with biomedical applications, which is important to avoid medical intervention to remove them. Thus, the aim of this work was to improve the biodegradability and subsequent bioabsorption of natural rubber latex membranes associating them with the polylactic acid, a biodegradable, bioreabsorbable and biocompatible polymer, besides being the most studied in biomedical, pharmaceutical and environmental fields. The membranes were prepared with different mass proportions of the polymers with dichloromethane as solvent. The material were submitted to mechanical test, infrared spectroscopy, scanning electron microscopy, water vapor transmission, swelling, in vitro degradation and hemolysis assay. The different polymer proportions influenced the membrane properties. The infrared spectroscopy indicating that no new chemical interactions were formed, and the scanning electron microscopy showed a polymer network formed in membranes with the highest natural rubber latex mass proportion. With the increase of polylactic acid in the membranes, there was an improvement in the degradation of the material of up to 130% and no hemolytic effect was observed, making it interesting for biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barros NR et al (2015) (2015) Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J Mater 1:1–7

    Google Scholar 

  2. Shin H et al (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364

    CAS  PubMed  Google Scholar 

  3. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Google Scholar 

  4. Jahno VD et al (2007) Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid). J Biomed Mater Res A 83(1):209–215

    PubMed  Google Scholar 

  5. Miranda MCR et al (2017) Porosity effects of natural latex (Hevea brasiliensis) on release of compounds for biomedical applications. J Biomater Sci Polym Edition 28(18):2117–2130

    CAS  Google Scholar 

  6. Mrué F et al (2004) Evaluation of the biocompatibility of a new biomembrane. Mater Res 7(2):277–283

    Google Scholar 

  7. Miranda MCR et al (2018) Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids 50(5):503–511

    CAS  PubMed  Google Scholar 

  8. Ereno C et al (2010) Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res A 95(3):932–939

    PubMed  Google Scholar 

  9. Ferreira M et al (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz J Phys 39(3):564–569

    CAS  Google Scholar 

  10. Frade M et al (2004) Management of diabetic skin wounds with a natural latex biomembrane. Med Cután Ibero-Latino-Americana 32(4):157–162

    Google Scholar 

  11. Shasteen C, Choy YB (2011) Controlling degradation rate of poly(lactic acid) for its biomedical applications. Biomed Eng Lett 1(163):163–167

    Google Scholar 

  12. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    CAS  Google Scholar 

  13. Bergström JS, Hayman D (2015) An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng 44(2):330–340

    PubMed  Google Scholar 

  14. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices Biomaterials 21(23):2335–2346

    CAS  PubMed  Google Scholar 

  15. Liao SS et al (2004) Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res B 69(2):158–165

    CAS  Google Scholar 

  16. Danoux CB et al (2014) In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4(1):1–12

    Google Scholar 

  17. Romeira KM, Drago BC, Murbach HD et al. (2012) Evaluation of Stryphnodendron sp. release using natural rubber latex membrane as carrier. J Appl Sci 12(7): 93–697

    Google Scholar 

  18. Herculano RD et al (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12(2):253–256

    CAS  Google Scholar 

  19. Prezotti FG et al (2012) Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate. Drug Dev Ind Pharm 38(11):1354–1359

    CAS  PubMed  Google Scholar 

  20. Meneguin AB et al (2014) Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydr Polym 99(1):140–149

    CAS  PubMed  Google Scholar 

  21. Borges FA et al (2017) Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci 134(39):1–10

    Google Scholar 

  22. Aldana DS et al (2014) Barrier properties of polylactic acid in cellulose based packages using montmorillonite as filler. Polymers 6(9):2386–2403

    Google Scholar 

  23. Zhu A, Zhang M, Wu J, Shen J (2002) Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials 23(23):4657–4665

    CAS  PubMed  Google Scholar 

  24. van den Brink RW et al (1998) Catalytic oxidation of dichloromethane on γ-Al2O3: a combined flow and infrared spectroscopic study. J Catal 180(2):153–160

    Google Scholar 

  25. Mathew AP, Oskmam K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025

    CAS  Google Scholar 

  26. Rhim JW, Mohanty AK, Singh SP, Ng PKW (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 101(6):3736–3742

    CAS  Google Scholar 

  27. Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci Technol 42(2):612–617

    CAS  Google Scholar 

  28. Jonoobi M, Harun J, Mathew AP, Oskman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747

    CAS  Google Scholar 

  29. Karst D, Yang T (2006) Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 47(13):4845–4850

    CAS  Google Scholar 

  30. Xu H, Teng C, Yu M (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 4(11):3922–3928

    Google Scholar 

  31. Garms BC et al (2017) Characterization and microbiological application of ciprofloxacin loaded in natural rubber latex membranes. Br J Pharm Res 15(1):1–10

    CAS  Google Scholar 

  32. Murbach HD, Ogawa GI, Borges FA et al (2014) (2014) Ciprofloxacin release using natural rubber latex membranes as carrier. Int J Biomater 1:1–7

    Google Scholar 

  33. Saijun D et al (2009) Water absorption and mechanical properties of water-swellable natural rubber Songklanakarin. J Sci Technol 31(5):561–565

    Google Scholar 

  34. Mirzaali MJ et al (2016) Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93(1):196–211

    PubMed  Google Scholar 

  35. Libonati F, Vergani L (2016) Understanding the structure–property relationship in cortical bone to design a biomimetic composite. Compos Struct 139(1):188–198

    Google Scholar 

  36. Kolk A et al (2012) Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J Cranio-Maxillo-Facial Surg 40(8):706–718

    Google Scholar 

  37. Chang-Min S et al (2003) Tensile characteristics and behavior of blood vessels from human brain in uniaxial tensile test KSME. Int J 17(7):1016–1025

    Google Scholar 

  38. Halász K, Hozakun Y (2015) Csóka L (2015) Reducing water vapor permeability of poly(lactic acid) film and bottle through layer-by-layer deposition of green-processed cellulose nanocrystals and chitosan. Int J Polym Sci 1:1–6

    Google Scholar 

  39. Shuai S et al (2010) (2010) Preparation and characterization of microporous poly (D, L-lactic acid) film for tissue engineering scaffold. Int J Nanomed 5:1049–1055

    Google Scholar 

  40. Proikakis CS et al (2006) Swelling and hydrolytic degradation of poly(D, L-lactic acid) in aqueous solutions. Polym Degrad Stab 9(3):614–619

    Google Scholar 

  41. Sato S et al (2012) Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film. J Appl Polym Sci 12(3):1607–1617

    Google Scholar 

  42. Ho CC, Khew MC (2000) Surface free energy analysis of natural and modified natural rubber latex films by contact angle method. Langmuir 1(3):1407–1414

    Google Scholar 

  43. Ishii D et al (2009) In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromol 10(2):237–242

    CAS  Google Scholar 

  44. Holy CE et al (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20(13):1177–1185

    CAS  PubMed  Google Scholar 

  45. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery-poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22(4):494–498

    CAS  Google Scholar 

  46. You Y et al (2005) In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci 95(2):193–200

    CAS  Google Scholar 

  47. Andiappan M et al (2013) Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Progr Biomater 2(6):1–11

    Google Scholar 

  48. Borges FA et al (2015) Natural rubber latex coated with calcium phosphate for biomedical application. J Biomater Sci 26(17):1256–1268

    CAS  Google Scholar 

  49. Henkelman S et al (2009) Standardization of incubation conditions for hemolysis testing of biomaterials. Mater Sci Eng C 29(5):1650–1654

    CAS  Google Scholar 

  50. Alippilakkotte S et al (2017) Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf A 529(1):771–782

    CAS  Google Scholar 

  51. Floriano JF et al (2018) Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment. J Polym Environ 26(6):2281–2289

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of FAPESP (Processes 2016/09736-8 and 2017/19603-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariana Biondi Cesar or Rondinelli Donizetti Herculano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesar, M.B., Borges, F.A., Bilck, A.P. et al. Development and Characterization of Natural Rubber Latex and Polylactic Acid Membranes for Biomedical Application. J Polym Environ 28, 220–230 (2020). https://doi.org/10.1007/s10924-019-01596-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01596-8

Keywords

Navigation