Skip to main content
Log in

Microstructure characterization of one high-speed extrusion coating polyethylene resin fractionated by solvent gradient fractionation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

One low density polyethylene (LDPE) resin with high-speed extrusion coating property is fractionated through solvent gradient fractionation (SGF) technique using 1,2,4-trimethylbenzene (TMB) and ethyl cellosolve (ECS) as good/poor solvent pair at 115 °C. The pristine sample and its fractions are characterized by high-temperature gel permeation chromatography (HT-GPC) coupled with triple detectors (refractive index RI, light scattering LS, viscometer VIS), 13C–nuclear magnetic resonance spectroscopy (13C–NMR), differential scanning calorimetry (DSC) and successive self-nucleation/annealing (SSA) thermal fractionation. By adjusting the ratio of good/poor solvent, the obtained fractions show their molecular weight from 1.58 × 103 g/mol to 4.76 × 105 g/mol. It is found that the fractions with high molecular weight (fractions 10–13) occupy about 55.85% in resin. Particularly, the molecular weight distribution (MWD) of most fractions is in the range of 1.1–1.2. Each fraction contains more short chain branch (SCB) and less long chain branch (LCB) simultaneously. With increasing the molecular weight, the branching content shows no regular change. The lowest SCB and total branch content regions correspond to molecular weight 1.97 × 104 to 4.10 × 104 g/mol. The melting and crystallization temperatures of fractions firstly increase and then decrease with the molecular weight. The crystallinity decreases gradually from 51.7% to 31.1%. In the SSA thermal fractionation, each fraction shows a broad range of endotherm with multiple melting peaks in DSC curve corresponding to the different methylene sequence length (MSL) (L n and L w ). The longest L n (L w ) region occurs in the molecular weight of 8.95 × 103 to 3.14 × 104 g/mol. The relationship between chain microstructure and properties is also discussed.

Graphical Abstract

One coating LDPE resin is effectively fractionated by solvent gradient fractionation using TMB/ECS as good/poor solvent pair according to molecular weight. The component with high molecular weight is more than that with low molecular weight. Higher molecular weight and LCB improve the melt strength synergetically, and suitable component with low molecular weight provides better flowability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Knuuttila H, Lehtinen A, Nummila-Pakarinen A (2004) Advanced polyethylene technologies—controlled material properties. Adv Polym Sci 169:13–27

    Article  CAS  Google Scholar 

  2. Hosoda S (1988) Structural distribution of linear low-density polyethylenes. Polym J 20(5):383–397

    Article  CAS  Google Scholar 

  3. Alamo RG, Viers BD, Mandelkern L (1993) Phase structure of random ethylene copolymers: a study of counit content and molecular weight as independent variables. Macromolecules 26(21):5740–5747

    Article  CAS  Google Scholar 

  4. Minick J, Moet A, Hiltner A, Baer E, Chum SP (1995) Crystallization of very low density copolymers of ethylene with α-olefins. J Appl Polym Sci 58(8):1371–1384

    Article  CAS  Google Scholar 

  5. Flory PJ (1949) Thermodynamic of crystallization in high polymer. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J Chem Phys 17:223–240

    Article  CAS  Google Scholar 

  6. Wang C, Chu MC, Lin TL, Lai SM, Shih HH, Yang JC (2001) Microstructures of a highly short-chain branched polyethylene. Polymer 42(4):1733–1741

    Article  CAS  Google Scholar 

  7. Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Münstedt H (2006) Influence of type and content of various comonomers on long-chain branching of ethene/α-olefin copolymers. Macromolecules 39(4):1474–1482

    Article  CAS  Google Scholar 

  8. Stadler FJ, Karimkhani V (2011) Correlations between the characteristic rheological quantities and molecular structure of long-chain branched metallocene catalyzed polyethylenes. Macromolecules 44(13):5401–5413

    Article  CAS  Google Scholar 

  9. Hutchinson RA (2001) Modeling of chain length and long-chain branching distributions in free-radical polymerization. Macromol Theory Simul 10(3):144–157

    Article  CAS  Google Scholar 

  10. Krallis A, Pladis P, Kiparissides C (2007) Prediction of the bivariate molecular weight-long chain branching distribution in high-pressure low-density polyethylene autoclaves. Macromol Theory Simul 16(6):593–609

    Article  CAS  Google Scholar 

  11. Otocka EP, Roe RJ, Hellmann MY, Muglia PM (1971) Distribution of long and short branches in low-density polyethylenes. Macromolecules 4(4):507–512

    Article  CAS  Google Scholar 

  12. Xu JT, Xu XR, Feng LX (2000) Short chain branching distributions of metallocene-based ethylene copolymers. Eur Polym J 36(4):685–693

    Article  CAS  Google Scholar 

  13. Kouda S (2008) Prediction of processability at extrusion coating for low-density polyethylene. Polym Eng Sci 48(6):1094–1102

    Article  CAS  Google Scholar 

  14. Sun T, Brant P, Chance RR, Graessley WW (2001) Effect of short chain branching on the coil dimensions of polyolefins in dilute solution. Macromolecules 34(19):6812–6820

    Article  CAS  Google Scholar 

  15. Fu Q, Chiu FC, He TB, Liu JP, Hsieh ET (2001) Molecular heterogeneity of metallocene short-chain branched polyethylenes and their fractions. Macromol Chem Phys 202(6):927–932

    Article  CAS  Google Scholar 

  16. Monrabal B (2013) Polyolefin characterization: recent advances in separation techniques. Adv Polym Sci 257:203–251

    Article  CAS  Google Scholar 

  17. Pasch H, Malik MI, Macko T (2013) Recent advances in high-temperature fractionation of polyolefins. Adv Polym Sci 251:77–140

    Article  CAS  Google Scholar 

  18. Wild L (1991) Temperature rising elution fractionation. Adv Polym Sci 98:1–47

    CAS  Google Scholar 

  19. Xue YH, Bo SQ, Ji XL (2015) Calibration curve establishment and fractionation temperature selection of polyethylene for preparative temperature rising elution fractionation. Chin J Polym Sci 33:1000–1008

    Article  CAS  Google Scholar 

  20. Soares JBP, Hamielec AE (1995) Temperature rising elution fractionation of linear polyolefins. Polymer 36(8):1639–1654

    Article  CAS  Google Scholar 

  21. Xue YH, Fan YD, Bo SQ, Ji XL (2015) Microstructure characterization of a complex branched low-density polyethylene. Chin J Polym Sci 33:508–522

    Article  CAS  Google Scholar 

  22. Xu JT, Feng LX (2000) Application of temperature rising elution fractionation in polyolefins. Eur Polym J 36(5):867–878

    Article  CAS  Google Scholar 

  23. Anantawaraskul S, JBP S, Wood-Adams PM (2005) Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv Polym Sci 182:1–54

    Article  CAS  Google Scholar 

  24. Xue YH, Fan YD, Bo SQ, Ji XL (2011) Characterization of the microstructure of impact polypropylene alloys by preparative temperature rising elution fractionation. Eur Polym J 47(8):1646–1653

    Article  CAS  Google Scholar 

  25. Xue YH, Yang HR, Bo SQ, Ji XL (2014) Microstructure characterization of low density polyethylene by temperature rising elution fractionation. Acta Polym Sin 12:1576–1584

    Google Scholar 

  26. Albrecht A, Bruell R, Macko T, Malz F, Pasch H (2009) Comparison of high-temperature HPLC, CRYSTAF and TREF for the analysis of the chemical composition distribution of ethylene-vinyl acetate copolymers. Macromol Chem Phys 210(16):1319–1330

    Article  CAS  Google Scholar 

  27. Monrabal B, Blanco J, Nieto J, Soares JBP (1999) Characterization of homogeneous ethylene/1-octene copolymers made with a single-site catalyst. CRYSTAF analysis and calibration. J Polym Sci A Polym Chem 37(1):89–93

    Article  CAS  Google Scholar 

  28. Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Crystallization elution fractionation. A new separation process for polyolefin resins. Macromol Symp 257(1):71–79

    Article  CAS  Google Scholar 

  29. Tarasova E, Poltimäe T, Krumme A, Lehtinen A, Viikna A (2011) Triple crystallization behavior of fractionated ethylene/α-olefin copolymers of different catalyst type. J Polym Res 18(2):207–216

    Article  CAS  Google Scholar 

  30. Hosoda S (1988) Structural distribution of linear low-density polyethylenes. Polym J 20(5):383–397

    Article  CAS  Google Scholar 

  31. Hsieh ET, Tso CC, Byers JD, Johnson TW, Fu Q, Cheng SD (1997) Intermolecular structural homogeneity of metallocene polyethylene copolymers. J Macromol Sci Phys 36(5):615–628

    Article  Google Scholar 

  32. Xue YH, Bo SQ, Ji XL (2016) Solvent gradient fractionation and chain microstructure of complex branched polyethylene resin. J Polym Res 23:131

    Article  CAS  Google Scholar 

  33. Tackx P, Tacx J (1998) Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS). Polymer 39(14):3109–3113

    Article  CAS  Google Scholar 

  34. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21(5):557–563

    Article  CAS  Google Scholar 

  35. Xue YH, Bo SQ, Ji XL (2015) Parameters optimization of successive self-nucleation/annealing thermal fractionation experiments for polyethylene resin and comparison with step crystallization. Acta Polym Sin Mar:326–330

  36. Xue YH, Wang YH, Fan YD, Yang HR, Tang T, Bo SQ, Ji XL (2014) Microstructure characterization of short-chain branching polyethylene with differential scanning calorimetry and successive selfnucleation/annealing thermal fractionation. Chin J Polym Sci 32:751–757

    Article  CAS  Google Scholar 

  37. Galland GB, Quijada R, Rojas R, Bazan G, Komon ZJA (2002) NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules 35(2):339–345

    Article  CAS  Google Scholar 

  38. Xue YH, Bo SQ, Ji XL (2015) Molecular chain heterogeneity of a branched polyethylene resin using cross-fractionation techniques. J Polym Res 22(8):160

    Article  CAS  Google Scholar 

  39. Yamaguchi M, Wagner MH (2006) Impact of processing history on rheological properties for branched polypropylene. Polymer 47(10):3629–3635

    Article  CAS  Google Scholar 

  40. Xue YH, Bo SQ, Ji XL (2015) Comparison of chain structures between high-speed extrusion coating Polyethylene resins by preparative temperature rising elution fractionation and cross-fractionation. Chin J Polym Sci 33(11):1586–1597

    Article  CAS  Google Scholar 

  41. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci B Polym Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  42. Müller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  CAS  Google Scholar 

  43. Zhang MQ, Wanke SE (2003) Quantitative determination of short-chain branching content and distribution in commercial polyethylenes by thermally fractionated differential scanning calorimetry. Polym Eng Sci 43(12):1878–1888

    Article  CAS  Google Scholar 

  44. Fan YD, Xue YH, Nie W, Ji XL, Bo SQ (2009) Characterization of the microstructure of bimodal HDPE resin. Polym J 41(8):622–628

    Article  CAS  Google Scholar 

  45. Randall JC, Zoepfl FJ, Silverman J (1983) A 13C-NMR study of radiation-induced long-chain branching in polyethylene. Macromol Chem Rapid Commun 4(3):149–157

    Article  CAS  Google Scholar 

  46. Randall JC (1973) Carbon-13 NMR of ethylene-1-olefin copolymers: extension to the short-chain branch distribution in a low-density polyethylene. J Polym Sci B Polym Phys 11(2):275–287

    Article  CAS  Google Scholar 

  47. Galland GB, de Souza RF, Mauler RS, Nunes FF (1999) 13C-NMR determination of the composition of linear low density polyethylene obtained with [η3-methallyl-nickel-diimine] PF6 complex. Macromolecules 32(5):1620–1625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the project from the PetraChina Company Limited (Grant No.: PRIKY15035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangping Sun or Xiangling Ji.

Electronic supplementary material

ESM 1

(DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Xue, Y., Wu, X. et al. Microstructure characterization of one high-speed extrusion coating polyethylene resin fractionated by solvent gradient fractionation. J Polym Res 25, 113 (2018). https://doi.org/10.1007/s10965-018-1480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1480-z

Keywords

Navigation