Skip to main content
Log in

Well-defined PMMA/diatomite nanocomposites by in situ AGET ATRP: diatomite as an appropriate replacement for clay

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Mesoporous diatomite nanoplatelets were used for in situ polymerization of methyl methacrylate via activators generated by electron transfer for atom transfer radical polymerization to synthesize well-defined poly (methyl methacrylate) nanocomposites. X-ray fluorescence, FTIR spectroscopy and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite nanoplatelets. In addition, structural and morphological studies were also performed by nitrogen adsorption/desorption isotherm, SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% mesoporous diatomite leads to increase of conversion from 75 to 91%. Molecular weight of PMMA chains increases from 7213 to 9878 g.mol−1 by addition of 3 wt% mesoporous diatomite; however, polydispersity index values increases from 1.15 to 1.43. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 77.3 to 82.4 °C by adding 3 wt% of mesoporous diatomite nanoplatelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rao Y, Pochan JM (2007). Macromolecules 40:290

    Article  CAS  Google Scholar 

  2. Farkhondekalam Ghadim M, Imani A, Farzi G (2014) J Nanostruct Chem 4:101

  3. Hsu Y, Chen G, Lee R (2014). J Polym Res 21:440

    Article  Google Scholar 

  4. Ghobadi E, Hemmati M, Khanbabaei G, Shojaei M, Asghari M (2015) Int J Nano Dimens 6:177

  5. Pourasghar A, Kamarian S (2015) Int J Nano Dimens 6:167

  6. Fu X, Qutubuddin S (2001). Polymer 42:807

    Article  CAS  Google Scholar 

  7. Alexandre M, Dubois P (2000). Mater Sci Eng 28:1

    Article  Google Scholar 

  8. Zanetti M, Lomakin S (2000). Macromol Mater Eng 279:1

    Article  CAS  Google Scholar 

  9. Varghese S, Karger-Kocsis J (2003). Polymer 44:4921

    Article  CAS  Google Scholar 

  10. Sarsabili M, Kalantari K, Khezri K (2016) J Therm Anal Calorim 126:1261

  11. Al-degs Y, Khraisheh MAM, Tutunji MF (2001). Wat Res 35:3724

    Article  CAS  Google Scholar 

  12. Ruggiero I, Terracciano M, Martucci NM, De Stefano L, Migliaccio N, Tatè R, Rendina I, Arcari P, Lamberti A, Rea I (2014). Nanoscale Res Lett 9:329

    Article  Google Scholar 

  13. Tsai W, Lai C, Hsien K (2006). J Colloid Interface Sci 297:749

    Article  CAS  Google Scholar 

  14. Li X, Li X, Wang G (2007). Mater Chem Phys 102:140

    Article  CAS  Google Scholar 

  15. Yu Y, Addai-Mensah J, Losic D (2012). Sci Technol Adv Mater 13:015008

    Article  Google Scholar 

  16. Nenadovic S, Nenadovic M, Kovacevic R, Matovic L, Matovic B, Jovanovic Z, Grbovic Novakovic J (2009). Sci Sint 41:309

    Article  CAS  Google Scholar 

  17. Yuan P, Liu D, Tan D, Liu K, Yu H, Zhong Y, Yuan A, Yu W, He H (2013). Microporous Mesoporous Mater 170:9

    Article  CAS  Google Scholar 

  18. Caliskan N, Kul AR, Alkan S, Sogut EG, Alacabey I (2011). J Hazard Mater 193:27

    Article  CAS  Google Scholar 

  19. Abbasian M, Jaymand M, Ghadami MZ, Fathi A (2010) Int J Nanosci Nanotechnol 6:168

  20. Matyjaszewski K, Xia J (2001). Chem Rev 101:2921

    Article  CAS  Google Scholar 

  21. Abbasian M, Khakpour Aali N (2016) J Nanostruct 6:38

  22. Cunningham MF (2008). Prog Polym Sci 33:365

    Article  CAS  Google Scholar 

  23. Karaman S, Karaipekli A, Sarı A, Bicer A (2011). Sol Energy Mater Sol Cells 95:1647

    Article  CAS  Google Scholar 

  24. Li X, Bian C, Chen W, He J, Wang Z, Xu N, Xue G (2003). Appl Surf Sci 207:378

    Article  CAS  Google Scholar 

  25. Li X, Li X, Wang G (2005). Appl Surf Sci 249:266

    Article  CAS  Google Scholar 

  26. Hu S, Zhu X, Hu W, Yan L, Cai C (2013). Polym Bull 70:517

    Article  CAS  Google Scholar 

  27. Liang JZ (2008). Polym Test 27:936

    Article  CAS  Google Scholar 

  28. Sheng G, Dong H, Li Y (2012). J Environ Radioact 113:108

    Article  CAS  Google Scholar 

  29. Khezri K, Fazli Y (2017). J Inorg Organomet Polym 27:266

    Article  CAS  Google Scholar 

  30. Garderen N, Clemens FJ, Mezzomo M, Bergmann CP, Graule T (2011). Appl Clay Sci 52:115

    Article  Google Scholar 

  31. Du Y, Yan J, Meng Q, Wang J, Dai H (2012). Mater Chem Phys 133:907

    Article  CAS  Google Scholar 

  32. Sun Z, Yang X, Zhang G, Zheng S, Frost RL (2013). Int J Miner Process 125:18

    Article  CAS  Google Scholar 

  33. Liu D, Yuan P, Tan D, Liu H, Wang T, Fan M, Zhu J, He H (2012). J Colloid Interface Sci 388:176

    Article  CAS  Google Scholar 

  34. Li M, Matyjaszewski K (2003). Macromolecules 36:6028

    Article  CAS  Google Scholar 

  35. Min K, Gao H, Matyjaszewski K (2005). J Am Chem Soc 127:3825

    Article  CAS  Google Scholar 

  36. Zhang L, Cheng Z, Lu Y, Zhu X (2009). Macromol Rapid Commun 30:543

    Article  CAS  Google Scholar 

  37. Wu D, Yang Y, Cheng X, Liu L, Tian J, Zhao H (2006). Macromolecules 39:7513

    Article  CAS  Google Scholar 

  38. Khezri K (2016) RSC Adv 6:109286

  39. Khezri K, Fazli Y (2017) Polym Sci Ser B 59:109

  40. Fazli Y, Khezri K (2017). Colloid Polym Sci 295:247

    Article  CAS  Google Scholar 

  41. Davoudizadeh S, Sarsabili M, Khezri K (2017) Z Phys Chem 231:1543

  42. Subramania S, Choia SW, Lee JY, Kim JH (2007). Polymer 48:4691

    Article  Google Scholar 

  43. Davoudizadeh S, Ghasemi M, Khezri K, Bahadorikhalili S (2017) J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6771-9

  44. Sarsabili M, Rahmatolahzadeh R, Shobeiri SA, Hamadanian M, Farazin A, Khezri K (2017) Polym Adv Technol. https://doi.org/10.1002/pat.4131

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khezrollah Khezri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazli, Y., Khezri, K. Well-defined PMMA/diatomite nanocomposites by in situ AGET ATRP: diatomite as an appropriate replacement for clay. J Polym Res 25, 9 (2018). https://doi.org/10.1007/s10965-017-1405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1405-2

Keywords

Navigation