Skip to main content

Advertisement

Log in

Continuously enhanced hoop strength of rotation-extruded polypropylene pipe via self-assembly β nucleating agent with different aspect ratio

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Self-assembling β nucleating agents (TMB-5) and self-designed rotation extrusion device were applied to optimize and control over hoop strength of polypropylene (PP) pipes. By adjusting final heating temperature, TMB-5 efficiently self-assembled into fibrous morphology with controllable aspect ratio, and acted as an oriented template to direct the epitaxial crystallization of PP, into β-crystals with various lamellae-stacking patterns. The obtained structural information clearly demonstrated that enlarging the aspect ratio of TMB-5 could increase the ordering index and packing intensity of lamellae, moreover, impose them transforming from random arrangement to axial-orientation and then to orthogonal orientation. Among them, the anisotropic ones were further guided to align off the axial-direction of PP pipes via rotation extrusion, where the hoop drag flow caused by the mandrel rotation was superposed on the axial flow. As a result, the hoop tensile strength was enhanced monotonously from 21.3 MPa to 30 MPa for the rotation extruded PP pipes with increasing the aspect ratio of TMB-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang K, Chen F, Li ZM, Fu Q (2014) Control of the hierarchical structure of polymer articles via “structuring” processing. Prog Polym Sci 39:891–920

    Article  CAS  Google Scholar 

  2. Nie M, Bai SB, Wang Q (2010) High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym Bull 65:609–621

    Article  CAS  Google Scholar 

  3. Pi L, XY H, Nie M, Wang Q (2014) Role of ultrahigh molecular weight polyethylene during rotation extrusion of polyethylene pipe. Ind Eng Chem Res 53:13828–13832

    Article  CAS  Google Scholar 

  4. Zhang B, Chen JB, Cui J, Zhang H, Ji FF, Zheng G, Heck B, Reiter G, Shen CY (2012) Effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules 45:8933–8937

    Article  CAS  Google Scholar 

  5. Chen YH, Fang DF, Hisao BS, Li ZM (2015) Insight into unique deformation behavior of oriented isotactic polypropylene with branched shish-kebabs. Polymer 60:274–283

    Article  CAS  Google Scholar 

  6. Bent J, Hutchings LR, Richards RW, Gough T, Spares R, Coates PD, Grillo I, Harlen OG, Read DJ, Graham RS, Likhtman AE, Groves DJ, Nicholson TM, McLeish TCB (2003) Neutron-mapping polymer flow: scattering, flow visualization, and molecular theory. Science 301:1691–1695

    Article  CAS  Google Scholar 

  7. Zhou QX, Liu FH, Guo C, Fu Q, Shen KZ, Zhang J (2011) Shish–kebab-like cylindrulite structures resulted from periodical shear-induced crystallization of isotactic polypropylene. Polymer 52:2970–2978

    Article  CAS  Google Scholar 

  8. Mykhaylyk OO, Chambon P, Impradice C, Fairclough JPA, Terrill NJ, Ryan AJ (2010) Control of structural morphology in shear-induced crystallization of polymers. Macromolecules 43:2389–2405

    Article  CAS  Google Scholar 

  9. He MJ, Chen W, Zhang H, Dong X (2007) Physics of macromolecules. Fudan University Publishing house, Shanghai

    Google Scholar 

  10. Phillips AW, Bhatia A, Zhu PW, Edward G (2011) Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules 44:3517–3528

    Article  CAS  Google Scholar 

  11. Balzano L, Ma Z, Cavallo D, van Erp TB, Fernandez-Ballester L, Peters GWM (2016) Molecular aspects of the formation of shish-kebab in isotactic polypropylene. Macromolecules 49:3799–3809

    Article  CAS  Google Scholar 

  12. Han R, Nie M, Bai SB, Wang Q (2013) Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym Bull 70:2083–2096

    Article  CAS  Google Scholar 

  13. Somani RH, Hsiao BS, Nogales A (2000) Structure development during shear flow-induced crystallization of i-pp: in-situ small-angle x-ray scattering study. Macromolecules 33:9385–9394

    Article  CAS  Google Scholar 

  14. Somani RH, Yang L, Zhu L, Hsiao BS (2005) Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46:8587–8623

    Article  CAS  Google Scholar 

  15. Housmans JW, Steenbakkers RJA, Roozemond PC, Peters GWM, Meijer HEH (2009) Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 42:5728–5740

    Article  CAS  Google Scholar 

  16. Varga JZ, AD M’r (2007) Effect of solubility and nucleating duality of N,N'-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40:2422–2431

    Article  CAS  Google Scholar 

  17. Phulkerd P, Nobukawa S, Uchiyama Y, Yamaguchi M (2011) Anomalous mechanical anisotropy of β form polypropylene sheet with N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer 52:4867–4872

    Article  CAS  Google Scholar 

  18. Han R, Li YJ, Wang Q, Nie M (2014) Critical formation conditions for beta-form hybrid shish-kebab and its structural analysis. RSC Adv 4:65035–65043

    Article  CAS  Google Scholar 

  19. Han R, Nie M, Wang Q (2015) Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J Taiwan Inst Chem Eng 52:158–164

    Article  CAS  Google Scholar 

  20. Chen KY, Zhou NQ, Liu B, Jin G (2009) Improved mechanical properties and structure of polypropylene pipe prepared under vibration force field. J Appl Polym Sci 114:3612–3620

    Article  CAS  Google Scholar 

  21. Laird ED, Li CY (2013) Structure and morphology control in crystalline polymer-carbon nanotube nanocomposites. Macromolecules 46:2877–2891

    Article  CAS  Google Scholar 

  22. Li LY, Li B, Hood MA, Li CY (2009) Carbon nanotube induced polymer crystallization: the formation of nanohybrid shish-kebabs. Polymer 50:953–965

    Article  CAS  Google Scholar 

  23. Li L, Li CY, Ni C (2006) Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc 128:1692–1699

    Article  CAS  Google Scholar 

  24. Guo Y, Wang Q, Bai SB (2010) The effect of rotational extrusion on the structure and properties of hdpe pipes. Polym Plast Technol Eng 49:908–915

    Article  CAS  Google Scholar 

  25. Mu D, Guo ZX, ZQ S, Yu J (2011) The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated by β-form nucleating agent. J Appl Polym Sci 119:1374–1382

    Article  Google Scholar 

  26. Park JY, Eom KY, Kwon OJ, Woo SS (2001) Chemical etching technique for the investigation of melt-crystallized isotactic polypropylene spherulite and lamellar morphology by scanning electron microscopy. Microsc Microanal 7:276–286

    Article  CAS  Google Scholar 

  27. Turner JA, Aizlewood JM, Beckett DR (1963) Crystalline forms of isotactic polypropylene. Macromol Chem Phys 75:134–158

    Google Scholar 

  28. Nie M, Han R, Wang Q (2014) Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind Eng Chem Res 53:4142–4146

    Article  CAS  Google Scholar 

  29. Samuels RJ, Yee RY (1972) Characterization of the structure and organization of β-form crystals in type III and type IV isotactic polypropylene spherulites. J Polym Sci B Polym Phys 10:385–432

    Article  CAS  Google Scholar 

  30. Yamaguchi M, Fukui T, Okamoto K, Sasaki S, Uchiyama Y, Ueoka C (2009) Anomalous molecular orientation of isotactic polypropylene sheet containing N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer 50:1497–1504

    Article  CAS  Google Scholar 

  31. Shao CG, Ma Z, Zhuo RR, Zhang RJ, Shen CY (2012) Inhomogeneous deformation of crystalline skeleton of syndiotactic polypropylene under uniaxial stretching. J Mater Sci 47:3334–3343

    Article  CAS  Google Scholar 

  32. Mu D, Jia MY, Guo ZX, Yu J (2011) Effect of final heating temperature on crystallization of isotactic polypropylene nucleated with an aryl amide derivative as β-form nucleating agent. Chin J Polym Sci 29:308–317

    Article  Google Scholar 

  33. Tang YJ, Jiang ZY, Men YF, An LJ, Enderle HF, Lilge D, Roth SV, Gehrke R, Rieger J (2007) Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study. Polymer 48:5125–5132

    Article  CAS  Google Scholar 

  34. Bartczak Z (2005) Effect of chain entanglements on plastic deformation behavior of linear polyethylene. Macromolecules 38:7702–7713

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51303114, 51421061 and 51703182), State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2016-3-05), Key Scientific Research Fund of Xihua University (Grant No: Z1520103). Shanghai Synchronous Radiation Facility is gratefully acknowledged for providing 2D-WAXD and 2D-SAXS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Nie, M. & Wang, Q. Continuously enhanced hoop strength of rotation-extruded polypropylene pipe via self-assembly β nucleating agent with different aspect ratio. J Polym Res 24, 204 (2017). https://doi.org/10.1007/s10965-017-1379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1379-0

Keywords

Navigation