Skip to main content
Log in

Synthesis and characterization of dextrin derivatives by heterogeneous esterification

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of fully-acylated dextrin esters (DS = 3) with varying side-chain lengths (C2–12) were synthesized by heterogeneous esterification using trifluoroacetic anhydride/carboxylic acid. The influence of side-chain lengths on structure and properties of dextrin esters were investigated by structural, thermal, mechanical and hydrophobic analysis. The thermal stability of dextrin was enhanced by esterification, presenting ca. 40–60 °C higher decomposition temperatures than that of neat-dextrin. The transition temperatures of melting and crystallization were not observed for all dextrin esters because they were amorphous polymers. The glass transition temperature (Tg) was not observed in dextrin but was observed in dextrin esters. As increasing side-chain length, Tgs of dextrin esters decreased ranged from 162.2 °C (C2) to 49.2 °C (C12). Colorless and transparent dextrin ester films were prepared to measure the film properties. Tensile strength of dextrin ester films tended to decrease with increasing side-chain lengths, whereas the elongation at break increased. And, dextrin ester films showed significantly increased hydrophobicity with a contact angle of up to 102° (C12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iwata T (2015) Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215

    Article  CAS  Google Scholar 

  2. Pan Y, Farmahini-Farahani M, O’Hearn P, Xiao H, Ocampo H (2016) An overview of bio-based polymers for packaging materials. J Bioresources Bioprod 1:106–113

    Google Scholar 

  3. Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes. https://doi.org/10.3390/membranes6020022

  4. Carvalho J, Gonçalves C, Gil AM, Gama FM (2007) Production and characterization of a new dextrin based hydrogel. Eur Polym J 43:3050–3059

    Article  CAS  Google Scholar 

  5. Zare EN, Lakouraj MM, Mohseni M (2014) Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met 187:9–16

    Article  Google Scholar 

  6. Lin LH, Lai YC, Chen KM, Li CS (2016) Preparation and surface activities of modified soy protein–dextrin surfactants. J Surfactant Deterg 19:19–28

    Article  CAS  Google Scholar 

  7. Das D, Patra P, Ghosh P, Rameshbabu AP, Dhara S, Pal S (2016) Dextrin and poly (lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem 7:2965–2975

    Article  CAS  Google Scholar 

  8. Glasser WG, McCartney BK, Samaranayake G (1994) Cellulose derivatives with low degree of substitution; 3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechnol Prog 10:214–219

    Article  CAS  Google Scholar 

  9. Crépy L, Miri V, Joly N, Martin P, Lefebvre JM (2011) Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydr Polym 83:1812–1820

    Article  Google Scholar 

  10. Vanmarcke A, Leroy L, Stoclet G, Duchatel-Crépy L, Lefebvre JM, Joly N, Gaucher V (2017) Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohydr Polym 164:249–257

    Article  CAS  Google Scholar 

  11. Ikai T, Yun C, Kojima Y, Suzuki D, Maeda K, Kanoh S (2016) Development of amylose-and β-cyclodextrin-based chiral fluorescent sensors bearing terthienyl pendants. Molecules. https://doi.org/10.3390/molecules21111518

  12. Skołucka-Szary K, Ramięga A, Piaskowska W, Janicki B, Grala M, Rieske P, Bartczak Z, Piaskowski S (2016) Synthesis and physicochemical characterization of chitin dihexanoate—A new biocompatible chitin derivative—In comparison to chitin dibutyrate. Mater Sci Eng C 60:489–502

    Article  Google Scholar 

  13. Marubayashi H, Yukinaka K, Enomoto-Rogers Y, Takemura A, Iwata T (2014) Curdlan ester derivatives: Synthesis, structure, and properties. Carbohydr Polym 103:427–433

    Article  CAS  Google Scholar 

  14. Chien CY, Enomoto-Rogers Y, Takemura A, Iwata T (2017) Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration. Carbohydr Polym 155:440–447

    Article  CAS  Google Scholar 

  15. Cumpstey I (2013) Chemical modification of polysaccharides. ISRN Org Chem 2013:417672

    Article  Google Scholar 

  16. Hettrich K, Fischer S, Schröder N, Engelhardt J, Drechsler U, Loth F (2005) Derivatization and characterization of xylan from oat spelts. Macromol Symp 232:37–48

    Article  Google Scholar 

  17. Hafrén J, Zou W, Córdova A (2006) Heterogeneous organoclick derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366

    Article  Google Scholar 

  18. Yang BY, Montgomery R (2006) Acylation of starch using trifluoroacetic anhydride promoter. Starch-Stärke 58:520–526

    Article  CAS  Google Scholar 

  19. Danjo T, Enomoto-Rogers Y, Takemura A, Iwata T (2014) Syntheses and properties of glucomannan acetate butyrate mixed esters. Polym Degrad Stab 109:373–378

    Article  CAS  Google Scholar 

  20. Enomoto-Rogers Y, Iio N, Takemura A, Iwata T (2015) Synthesis and characterization of pullulan alkyl esters. Eur Polym J 66:470–477

    Article  CAS  Google Scholar 

  21. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Syntheses and characterization of xylan esters. Polymer 53:3885–3893

    Article  CAS  Google Scholar 

  22. Ponder GR, Richards GN, Stevenson TT (1992) Influence of linkage position and orientation in pyrolysis of polysaccharides: A study of several glucans. J Anal Appl Pyrolysis 22:217–229

    Article  CAS  Google Scholar 

  23. Ponder GR, Richards GN (1994) A review of some recent studies on mechanisms of pyrolysis of polysaccharides. Biomass Bioenergy 7:1–24

    Article  CAS  Google Scholar 

  24. Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1999) Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci 74:1440–1451

    Article  CAS  Google Scholar 

  25. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17:875–889

    Article  CAS  Google Scholar 

  26. Winkler H, Vorwerg W, Rihm R (2014) Thermal and mechanical properties of fatty acid starch esters. Carbohydr Polym 102:941–949

    Article  CAS  Google Scholar 

  27. Lu X, Luo Z, Yu S, Fu X (2012) Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids. J Agric Food Chem 60:9273–9279

    Article  CAS  Google Scholar 

  28. Crépy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2:165–170

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Japanese Government (Monbukagakusho; MEXT) Scholarship for Top Global University Project 2017 and JST-ALCA Project (White Biotechnology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahisa Iwata.

Additional information

This article is part of the Topical Collection on Bio-Based Polymers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.Y., Danjo, T. & Iwata, T. Synthesis and characterization of dextrin derivatives by heterogeneous esterification. J Polym Res 25, 183 (2018). https://doi.org/10.1007/s10965-017-1333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1333-1

Keywords

Navigation