Skip to main content

Advertisement

Log in

Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile) (P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cryogels are macroporous hydrogels which are synthesized through cryogelation method. In the present study cryogels of poly (2-hydroxyethyl methacrylate-co-acrylonitrile) (P (HEMA-co-AN)) were synthesized by copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylonitrile (AN) monomers by redox polymerization using cryogelation technique. The synthesized cryogels were characterized by FTIR, SEM, XRD, DSC and TGA techniques. Different compositions of the cryogels were prepared by varying concentrations of the monomers and redox initiators in the feed mixture. These cryogels were then subjected to swelling studies and porosity determination. The swelling behavior was studied as function of concentration of the monomers, redox initiators, temperature, pH, and simulated biological fluids. The prepared cryogels were also characterized for their network parameters using water sorption data. The biocompatibility of P (HEMA-co-AN) cryogel was evaluated by in vitro cytotoxicity test. The results indicated that the P (HEMA-co-AN) cryogel had macroporous morphology and exhibited good water absorption capacity. Moreover, the cryogel was thermally stable and biocompatible in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  2. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  3. Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems Adv Colloid Interf Sci 168:247–262

    Article  CAS  Google Scholar 

  4. Shetye SP, Godbole A, Bhilegaokar S, Gajare P (2015) Hydrogels: introduction, preparation, characterization and applications IJRM Human 1(1):47–71

    Google Scholar 

  5. Das N (2013) Preparation methods and properties of hydrogel Int J Pharm Sci 5(3):112–117

    CAS  Google Scholar 

  6. Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels Iran Polym J 14(12):1022–1030

    CAS  Google Scholar 

  7. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest Trends Biotechnol 21(10):445–451

    Article  CAS  Google Scholar 

  8. Gun'ko VM, Savina IN, Mikhalovsky SV (2013) Cryogels: morphological, structural and adsorption characterization Adv Colloid Interf Sci 187–188:1–46

    Article  Google Scholar 

  9. Jain E, Damania A, Shakya AK, Kumar A, Sarin SK, Kumar A (2015) Fabrication of macroporous cryogels as potential hepatocyte carriers for bioartificial liver support Colloids Surf B 136:761–771

    Article  CAS  Google Scholar 

  10. Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique React Funct Polym 73:923–928

    Article  CAS  Google Scholar 

  11. Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation J Chromatogr A 1357:24–35

    Article  Google Scholar 

  12. Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan−agarose−gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering J R Soc Interface 8:540–554

    Article  CAS  Google Scholar 

  13. Bencherif SA, Braschler TM, Renaud P (2013) Advances in the design of macroporous polymer scaffolds for potential applications in dentistry J Periodontal Implant Sci 43:251–261

    Article  CAS  Google Scholar 

  14. Petrenko YA, Ivanov RV, Lozinsky VI, Petrenko AY (2011) Comparison of the methods for seeding human bone marrow mesenchymal stem cells to macroporous alginate cryogel carriers Cell Technologies in Biology and Medicine 4:543–546

    Google Scholar 

  15. Alkan H (2015) Poly(hydroxyethyl methacrylate)-co-N-methacryloyl-(L)- histidine methyl ester based cryogel for the removal of Fe3+ from human plasma effected with beta thalassemia Hacettepe J Biol & Chem 43(3):179–185

    Google Scholar 

  16. Carvalho BMA, Carvalho LM, Silva WF, Minim LA, Soares AM, Carvalho GGP, Silva SLD (2014) Direct capture of lactoferrin from cheese whey on supermacroporous column of polyacrylamide cryogel with copper ions Food Chem 154:308–314

    Article  CAS  Google Scholar 

  17. Martinez YN, Piñuel L, Castro GR, Breccia JD (2012) Polyvinyl alcohol–pectin cryogel films for controlled release of enrofloxacin Appl Biochem Biotechnol 167:1421–1429

    Article  CAS  Google Scholar 

  18. Lozinsky VI, Plieva FM (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization overview of recent research and developments Enzym Microb Technol 23:227–242

    Article  CAS  Google Scholar 

  19. Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY (2010) Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study Biomaterials 31:67–76

    Article  CAS  Google Scholar 

  20. Shevchenko RV, Eeman M, Rowshanravan B, Allan IU, Savina IN, Illsley M, Salmon M, James SL, Mikhalovsky SV, James SE (2014) The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair Acta Biomater 10:3156–3166

    Article  CAS  Google Scholar 

  21. Sahiner N, Demirci S, Sahiner M, Yilmaz S, Lohedan HA (2015) The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions J Environ Manag 152:66–74

    Article  CAS  Google Scholar 

  22. Liu G, Xie D, Li Y, Zhang Y, Huang F (2013) Shape memory properties of poly(methyl methacrylate-co-2-hydroxyethyl methacrylate)/poly(ethylene glycol) complexes Polimery 58(4):304–307

    Article  CAS  Google Scholar 

  23. Santos JFRD, Couceiro R, Concheiro A, Labandeira JJT, Lorenzo CA (2008) Poly(hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties Acta Biomater 4:745–755

    Article  Google Scholar 

  24. Podkościelna B, Bartnicki A, Gawdzik B (2012) New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: synthesis, modifications and properties Express Polym Lett 6(9):759–771

    Article  Google Scholar 

  25. Özgür E, Bereli N, Türkmen D, Ünal S, Denizli A (2011) PHEMA cryogel for in-vitro removal of anti-dsDNA antibodies from SLE plasma Mater Sci Eng C 31:915–920

    Article  Google Scholar 

  26. Perçin I, AksÖz E (2012) PHEMA based cryogel for lectin purification from soybean flour Hacettepe J Biol & Chem 40(3):303–308

    Google Scholar 

  27. Dinu MV, Přádný M, Drăgan ES, Michálek J (2013) Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching J Polym Res 20:285–295

    Article  Google Scholar 

  28. Dragan ES, Cocarta AI, Gierszewska M (2016) Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery Colloids Surf B 139:33–41

    Article  CAS  Google Scholar 

  29. Yavuz M, Çakir O, Baysal Z (2016) Adsorption of cellulase on poly(2-hydroxyethyl methacrylate) cryogels containing phenylalanine Turk J Chem 40:720–728

    Article  CAS  Google Scholar 

  30. Sandu T, Sarbu A, Damian CM, Patroi D, Lordache TV, Budinova T, Tsyntsarski B, Yardim MF, Sirkecioglu A (2015) Functionalized bicomponent polymer membranes as supports for covalent immobilization of enzymes React Funct Polym 96:5–13

    Article  CAS  Google Scholar 

  31. Bajpai AK (2004) Blood protein adsorption onto a polymeric biomaterial of polyethylene glycol and poly[(2-hydroxyethyl methacrylate)-co-acrylonitrile] and evaluation of in vitro blood compatibility Polym Int 54:304–315

    Article  Google Scholar 

  32. Bajpai AK, Mishra DD (2004) Adsorption of a blood protein on to hydrophilic sponges based on poly(2-hydroxyethyl methacrylate). J Mater Sci-Mater Med 15:583–592

    Article  CAS  Google Scholar 

  33. Tan WT, Radhi MM, Rahman MZA, Kassim AB (2010) Synthesis and characterization of grafted polystyrene with acrylonitrile using gamma-irradiation J Appl Sci 10:139–144

    Article  CAS  Google Scholar 

  34. Passos MF, Dias DRC, Bastos GNT, Jardini AL, Benatti ACB, Dias CGBT, Filho RM (2016) pHEMA hydrogels synthesis, kinetics and in vitro tests J Therm Anal Calorim 125:361–368

    Article  CAS  Google Scholar 

  35. Vargün E, Usanmaz A (2007) Thermal degradation of poly(2-hydroxyethyl methacrylate) obtained by gamma radiation Polymer Prepr 48(2):296–297

    Google Scholar 

  36. Chen Y, Liu H, Zhang Z (2010) Characterization and morphology of composites prepared from polyacrylonitrile and silver nitrate Appl Mech Mater 26-28:159–162

    Article  CAS  Google Scholar 

  37. Mohamed RR, Seoudi RS, Sabaa MW (2012) Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly (acrylonitrile) hydrogels Cellulose 19:947–958

    Article  CAS  Google Scholar 

  38. Alexander L, Klug HP (1950) Determination of crystallite size with the x-ray spectrometer J Appl Phys 21:137–142

    Article  CAS  Google Scholar 

  39. Rambo MKD, Ferreira MMC (2015) Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis J Braz Chem Soc 26(7):1491–1499

    CAS  Google Scholar 

  40. Bajaj P, Sreekumar TV, Sen K (2001) Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers Polymer 42(4):1707–1718

    Article  CAS  Google Scholar 

  41. Fecchio BD, Valandro SR, Neumann MG, Cavalheiro CCS (2016) Thermal decomposition of polymer/montmorillonite nanocomposites synthesized in situ on a clay surface J Braz Chem Soc 27(2):278–284

    CAS  Google Scholar 

  42. Rapado M, Peniche C (2015) Synthesis and characterization of pH and temperature responsive poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels Polímeros 25(6):547–555

    Article  Google Scholar 

  43. Bajpai AK, Shrivastava M (2001) Water sorption dynamics of hydrophobic, ionizable copolymer gels J Sci Ind Res 60:131–140

    CAS  Google Scholar 

  44. Işik B (2000) Swelling behavior of acrylamide-2-hydroxyethyl methacrylate hydrogels Turk J Chem 24:147–156

    Google Scholar 

  45. Chen YC, Chirila TV, Russo AV (1993) Hydrophilic sponges based on 2-hydroxyethyl methacrylate II effect of monomer mixture composition on the equilibrium water content and swelling behavior Mater Forum 17:57–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Bajpai, J. & Bajpai, A.K. Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile) (P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity. J Polym Res 24, 111 (2017). https://doi.org/10.1007/s10965-017-1276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1276-6

Keywords

Navigation