Skip to main content
Log in

Thermoresponsive cryogels of poly(2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (P(HEMA-co-NIPAM)): fabrication, characterization and water sorption study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cryogels of poly(2-hydroxyethyl methacrylate-co-N-isopropylacrylamide) (P(HEMA-co-NIPAM)) were prepared by cryogelation technique. Redox polymerization method was utilized to copolymerize monomers 2-hydroxyethyl methacrylate (HEMA) and N-isopropylacrylamide (NIPAM), using N, N′-methylene-bis-acrylamide (MBA) as cross-linker. Characterization of the as-prepared cryogels was done by Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction techniques, respectively. During synthesis of cryogels, the concentrations of HEMA, NIPAM, MBA, redox initiator, and activator and the number of freezing–thawing cycles were varied to obtain different compositions of P(HEMA-co-NIPAM) cryogels. These cryogels were further evaluated for water sorption capacity through gravimetric method. The pH, temperature and nature of the swelling medium were also varied to observe their effects on water uptake capacity of the cryogels. The biocompatible nature of the materials was ascertained by blood hemolysis test. The prepared cryogels of P(HEMA-co-NIPAM) were found to be macroporous, have good water uptake potential, fair biocompatible, thermally stable nature, displayed temperature-sensitive water sorption behavior and thus showed potential to be utilized as scaffold in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bencherif SA, Sands RW, Bhatta D et al (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci 109:19590–19595. https://doi.org/10.1073/pnas.1211516109

    Article  PubMed  Google Scholar 

  2. Lozinsky VI, Galaev IY, Plieva FM et al (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451. https://doi.org/10.1016/j.tibtech.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Stanescu MD, Fogorasi M, Shaskolskiy BL et al (2010) New potential biocatalysts by laccase immobilization in PVA cryogel type carrier. Appl Biochem Biotechnol 160:1947–1954. https://doi.org/10.1007/s12010-009-8755-0

    Article  CAS  PubMed  Google Scholar 

  4. Belyaeva AV, Smirnova YA, Lysogorskaya EN et al (2008) Biocatalytic properties of thermolysin immobilized on polyvinyl alcohol cryogel. Russ J Bioorg Chem 34:435–441. https://doi.org/10.1134/S1068162008040079

    Article  CAS  Google Scholar 

  5. Luding Y, Shaochuan S, Junxian Y, Kejian YAO (2011) Isolation of lysozyme from chicken egg white using polyacrylamide-based cation-exchange cryogel. Chin J Chem Eng 19:876–880

    Article  Google Scholar 

  6. Sharma A, Bhat S, Vishnoi T et al (2013) Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix for tissue engineering applications. Biomed Res Int 2013:1–15. https://doi.org/10.1155/2013/478279

    Article  CAS  Google Scholar 

  7. Dainiak MB, Allan IU, Savina IN et al (2010) Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials 31:67–76. https://doi.org/10.1016/j.biomaterials.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  8. Sahiner N, Seven F (2014) The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis. Energy 71:170–179. https://doi.org/10.1016/j.energy.2014.04.031

    Article  CAS  Google Scholar 

  9. Kajiwara Y, Nagai A, Chujo Y (2009) Microwave-assisted synthesis of poly(2-hydroxyethyl methacrylate) (HEMA)/silica hybrid using in situ polymerization method. Polym J 41:1080–1084. https://doi.org/10.1295/polymj.PJ2009157

    Article  CAS  Google Scholar 

  10. Singh B, Dhiman A (2015) Designing bio-mimetic moxifloxacin loaded hydrogel wound dressing to improve antioxidant and pharmacology properties. RSC Adv 5:44666–44678. https://doi.org/10.1039/C5RA06857F

    Article  CAS  Google Scholar 

  11. Gibas I, Janik H (2010) Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4:297–304

    Google Scholar 

  12. Al-Shohani A, Awwad S, Tee Khaw P, Brocchini S (2017) The preparation of HEMA-MPC films for ocular drug delivery. Br J Pharm 2:1–11. https://doi.org/10.5920/bjpharm.2017.05

    Article  Google Scholar 

  13. Sanyasi S, Kumar A, Goswami C et al (2014) A carboxy methyl tamarind polysaccharide matrix for adhesion and growth of osteoclast-precursor cells. Carbohydr Polym 101:1033–1042. https://doi.org/10.1016/j.carbpol.2013.10.047

    Article  CAS  PubMed  Google Scholar 

  14. Ingavle GC, Baillie LWJ, Zheng Y et al (2015) Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen. Biomaterials 50:140–153. https://doi.org/10.1016/j.biomaterials.2015.01.039

    Article  CAS  PubMed  Google Scholar 

  15. Erzengin M, Ünlü N, Odabaşı M (2011) A novel adsorbent for protein chromatography: supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles. J Chromatogr A 1218:484–490. https://doi.org/10.1016/j.chroma.2010.11.074

    Article  CAS  PubMed  Google Scholar 

  16. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242. https://doi.org/10.3390/polym3031215

    Article  CAS  Google Scholar 

  17. Wei M, Gao Y, Li X, Serpe MJ (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143. https://doi.org/10.1039/C6PY01585A

    Article  CAS  Google Scholar 

  18. Cappelletti AL, Paez JI (2011) Strumia MC (2011) Synthesis and characterization of thermo-sensitive magnetic maghemite nanoparticles. Ark Online J Org Chem 7:426–438

    Google Scholar 

  19. Chang C, Wei H, Wu D-Q et al (2011) Thermo-responsive shell cross-linked PMMA-b-P(NIPAAm-co-NAS) micelles for drug delivery. Int J Pharm 420:333–340. https://doi.org/10.1016/j.ijpharm.2011.08.038

    Article  CAS  PubMed  Google Scholar 

  20. Ye X, Fei J, Guan J et al (2010) Dispersion of polystyrene inside polystyrene- b -poly(N -isopropylacrylamide) micelles in water. J Polym Sci Part B Polym Phys 48:749–755. https://doi.org/10.1002/polb.21948

    Article  CAS  Google Scholar 

  21. Alvarez-Lorenzo C, Concheiro A, Dubovik AS et al (2005) Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Controlled Release 102:629–641. https://doi.org/10.1016/j.jconrel.2004.10.021

    Article  CAS  Google Scholar 

  22. Burillo G, Castillo-Rojas S, Arrieta H (2012) Cu(II) immobilization in AAc/NIPAAm-based polymer systems synthesized using ionizing radiation. Radiat Phys Chem 81:278–283. https://doi.org/10.1016/j.radphyschem.2011.11.010

    Article  CAS  Google Scholar 

  23. Contreras-García A, Alvarez-Lorenzo C, Concheiro A, Bucio E (2010) PP films grafted with N-isopropylacrylamide and N-(3-aminopropyl) methacrylamide by γ radiation: synthesis and characterization. Radiat Phys Chem 79:615–621. https://doi.org/10.1016/j.radphyschem.2009.12.007

    Article  CAS  Google Scholar 

  24. Çiçek H, Tuncel A (1998) Preparation and characterization of thermoresponsive isopropylacrylamide–hydroxyethylmethacrylate copolymer gels. J Polym Sci Part Polym Chem 36:527–541. https://doi.org/10.1002/(SICI)1099-0518(199803)36:4%3c527:AID-POLA3%3e3.0.CO;2-M

    Article  Google Scholar 

  25. Gan T, Zhang Y, Guan Y (2009) In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3d cell scaffold. Biomacromol 10:1410–1415. https://doi.org/10.1021/bm900022m

    Article  CAS  Google Scholar 

  26. Bajpai AK, Mishra DD (2004) Adsorption of a blood protein on to hydrophilic sponges based on poly(2-hydroxyethyl methacrylate). J Mater Sci Mater Med 15:583–592

    Article  CAS  Google Scholar 

  27. Sahiner N, Sagbas S, Sahiner M, Silan C (2017) P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material. Mater Sci Eng C 70:317–326. https://doi.org/10.1016/j.msec.2016.09.025

    Article  CAS  Google Scholar 

  28. Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation. J Chromatogr A 1357:24–35. https://doi.org/10.1016/j.chroma.2014.05.055

    Article  CAS  PubMed  Google Scholar 

  29. Scognamillo S, Alzari V, Nuvoli D et al (2011) Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization of N-isopropyl acrylamide and 3-sulfopropyl acrylate potassium salt. J Polym Sci Part Polym Chem 49:1228–1234. https://doi.org/10.1002/pola.24542

    Article  CAS  Google Scholar 

  30. Sayil C, Okay O (2001) Macroporous poly(N-isopropyl) acrylamide networks: formation conditions. Polymer 42:7639–7652

    Article  CAS  Google Scholar 

  31. Chen Y-C, Chirila TV, Russo AV (1993) Hydrophilic sponges based on 2-hydroxyethyl methacrylate. II: effect of monomer mixture composition on the equilibrium water content and swelling behaviour. In: Materials forum. Institute of Metals and Materials Australasia, pp 57–65

  32. Don T-M, Chou S-C, Cheng L-P, Tai H-Y (2011) Cellular compatibility of copolymer hydrogels based on site-selectively-modified chitosan with poly(N-isopropyl acrylamide). J Appl Polym Sci 120:1–12. https://doi.org/10.1002/app.32806

    Article  CAS  Google Scholar 

  33. Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5:839–848. https://doi.org/10.3144/expresspolymlett.2011.83

    Article  CAS  Google Scholar 

  34. Bajpai A (2005) Blood protein adsorption onto a polymeric biomaterial of polyethylene glycol and poly[(2-hydroxyethyl methacrylate)-co-acrylonitrile] and evaluation of in vitro blood compatibility. Polym Int 54:304–315. https://doi.org/10.1002/pi.1673

    Article  CAS  Google Scholar 

  35. Rapado M, Peniche C (2015) Synthesis and characterization of pH and temperature responsive poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels. Polímeros 25:547–555. https://doi.org/10.1590/0104-1428.2097

    Article  Google Scholar 

  36. Nita LE, Chiriac AP, Nistor M, Budtova T (2013) Upon the delivery properties of a polymeric system based on poly(2-hydroxyethyl methacrylate) prepared with protective colloids. J Biomater Nanobiotechnol 04:357–364. https://doi.org/10.4236/jbnb.2013.44045

    Article  CAS  Google Scholar 

  37. Lencina MMS, Ciolino AE, Andreucetti NA, Villar MA (2015) Thermoresponsive hydrogels based on alginate-g-poly(N-isopropylacrylamide) copolymers obtained by low doses of gamma radiation. Eur Polym J 68:641–649. https://doi.org/10.1016/j.eurpolymj.2015.03.071

    Article  CAS  Google Scholar 

  38. Solano-Umaña V, Vega-Baudrit JR (2015) Micro, meso and macro porous materials on medicine. J Biomater Nanobiotechnol 06:247–256. https://doi.org/10.4236/jbnb.2015.64023

    Article  CAS  Google Scholar 

  39. Sun Y-M, Lee H-L (1996) Sorption/desorption properties of water vapour in poly(2-hydroxyethyl methacrylate): 1. Experimental and preliminary analysis. Polymer 37:3915–3919

    Article  CAS  Google Scholar 

  40. Yang S, Ford J, Ruengruglikit C et al (2005) Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft, biomimetic microlens arrays. J Mater Chem 15:4200–4202. https://doi.org/10.1039/b509077f

    Article  CAS  Google Scholar 

  41. Katiyar R, Bag DS, Nigam I (2014) Synthesis and evaluation of swelling characteristics of fullerene (C60) containing cross-linked poly(2-hydroxyethyl methacrylate) hydrogels. Adv Mater Lett 5:214–222. https://doi.org/10.5185/amlett.2013.8532

    Article  CAS  Google Scholar 

  42. Fecchio BD, Valandro SR, Neumann MG, Cavalheiro CCS (2016) Thermal decomposition of polymer/montmorillonite nanocomposites synthesized in situ on a clay surface. J Braz Chem Soc 27:278–284. https://doi.org/10.5935/0103-5053.20150216

    Article  CAS  Google Scholar 

  43. Podkoscielna B, Bartnicki A, Gawdzik B (2012) New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: synthesis, modifications and properties. Express Polym Lett 6:759–771. https://doi.org/10.3144/expresspolymlett.2012.81

    Article  CAS  Google Scholar 

  44. García-Uriostegui L, Burillo G, Bucio E (2012) Synthesis and characterization of thermosensitive interpenetrating polymer networks based on N-isopropylacrylamide/N-acryloxysuccinimide, crosslinked with polylysine, grafted onto polypropylene. Radiat Phys Chem 81:295–300. https://doi.org/10.1016/j.radphyschem.2011.11.053

    Article  CAS  Google Scholar 

  45. Das D, Das R, Ghosh P et al (2013) Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Adv 3:25340–25350. https://doi.org/10.1039/c3ra44716b

    Article  CAS  Google Scholar 

  46. Gils PS, Ray D, Sahoo PK (2010) Controlled release of doxofylline from biopolymer based hydrogels. Am J Biomed Sci 2:373–383. https://doi.org/10.5099/aj100400373

    Article  CAS  Google Scholar 

  47. Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166. https://doi.org/10.1016/j.carbpol.2013.10.054

    Article  CAS  PubMed  Google Scholar 

  48. Bundela H, Bajpai AK (2008) Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett 2:201–213. https://doi.org/10.3144/expresspolymlett.2008.25

    Article  CAS  Google Scholar 

  49. Rambo MKD, Ferreira MMC (2015) Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. J Braz Chem Soc 26:1491–1499. https://doi.org/10.5935/0103-5053.20150118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Bajpai, J., Bajpai, A.K. et al. Thermoresponsive cryogels of poly(2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (P(HEMA-co-NIPAM)): fabrication, characterization and water sorption study. Polym. Bull. 77, 4417–4443 (2020). https://doi.org/10.1007/s00289-019-02971-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02971-0

Keywords

Navigation