Skip to main content
Log in

Preparation of carboxymethyl chitosan nanofibers through electrospinning the ball-milled nanopowders with poly (lactic acid) and the blood compatibility of the electrospun NCMC/PLA mats

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Carboxymethyl chitosan was pulverized to nanopowder (NCMC) with a diameter of 483 nm through ball-milling. 400 mg NCMC was successfully electrospun to nanofibers with the assistant of 4 g poly (lactic acid) (PLA) to prepare NCMC/PLA nanofibrous composite mats. Scanning electron microscope images revealed that there were no NCMC particles in the NCMC/PLA mats, indicating NCMC had been stretched to nanofibers. NCMC/PLA mats with different morphology could be prepared through adjusting the electrospinning voltage at 12–30 kV and the distance at 10–22 cm. The presence of NCMC increased the spinnability of PLA according to the electrospinning parameters. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy verified the existence of NCMC in the mats. Crosslinking with glutaraldehyde increased the stability of NCMC/PLA in water. Crosslinked NCMC/PLA mats expressed good blood compatibility according to the results of blood clotting time and platelet adhesion experiment. The methodology of preparation nanofibers from polymer nanopowders through electrospinning could be used to prepare more composite nanofibers while adopting different raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2(4):454–472

    Article  CAS  Google Scholar 

  2. Kohane DS, Langer R (2010) Biocompatibility and drug delivery systems. Chem Sci 1(4):441–446

    Article  CAS  Google Scholar 

  3. Weber N, Wendel HP, Ziemer G (2002) Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption. Biomaterials 2(3):429–439

    Article  Google Scholar 

  4. Ercolani E, Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9:861–888

    Article  CAS  Google Scholar 

  5. Li Q, Dunn E (1992) Applications and properties of chitosan. J Bioact Compat Polym 7:370–397

    Article  CAS  Google Scholar 

  6. Weber N, Wendel HP, Ziemer G (2002) Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption. Biomaterials 23:429–439

    Article  CAS  Google Scholar 

  7. Balan V, Verestiuc L (2014) Strategies to improve chitosan hemocompatibility: a review. Eur Polym 53:171–188

    Article  CAS  Google Scholar 

  8. Yang Y, Zhou Y, Chuo H, Wang SY, Yu JG (2007) Blood compatibility and mechanical properties of oxidized-chitosan films. J Appl Polym Sci 106:372–377

    Article  CAS  Google Scholar 

  9. Sharon S, Katanchalee MN (2005) Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids Surf B: Biointerfaces 42:147–155

    Article  Google Scholar 

  10. Riccardo AAM, Fabio T, Monica E (1984) Sulfated N-(carboxymethyl) chitosans: novel blood anticoagulants. Carbohydr Res 126:225–231

    Article  Google Scholar 

  11. Dawei F, Baoqin H, Wen D, Zhao Y, Lv Y, Liu WS (2011) Effects of carboxymethyl chitosan on the blood system of rats. Biochem Biophys Res Commun 408:110–114

    Article  Google Scholar 

  12. Zhu AP, Chen T (2006) Blood compatibility of surface-engineered poly(ethylene terephthalate) via o-arboxymethylchitosan. Colloids Surf B: Biointerfaces 50(2):120–125

    Article  Google Scholar 

  13. Braghirolli D, Steffens D, Pranke P (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 1(9):743–753

    Article  Google Scholar 

  14. Chen H, Song W, Zhou F, Wu ZK, Huang H, Zhang JH, Lin Q, Yang B (2009) The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloid Surf B 7(1):275–281

    Article  Google Scholar 

  15. Doshi J, Reneker DH (1995) Electrospinning and applications of electrospun fibers. J Electrost 3(5):151–160

    Article  Google Scholar 

  16. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  17. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605

    Article  CAS  Google Scholar 

  18. Theron SA, Yarin AL, Zussman E, Kroll E (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 4(6):2889–2899

    Article  Google Scholar 

  19. Ding F, Deng H, Du Y, Shi X, Wang Q (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nano 6:9477–9493

    CAS  Google Scholar 

  20. Kriegel C, Kit K, McClements DJ, Weiss J (2009) Electrospinning of chitosan–poly (ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 50:189–200

    Article  CAS  Google Scholar 

  21. Du J, Hsieh YL (2008) Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan. Nanotechnology19(12):125707

  22. Du F, Wang H, Zhao W, Li D, Kong D, Yang J, Zhang Y (2012) Gradient nanofibrous chitosan/poly −3 caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 33:762–770

    Article  CAS  Google Scholar 

  23. Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142

    Article  CAS  Google Scholar 

  24. Robert P, Mauduit J, Frank RM, Vert M (1993) Biocompatibility and resorbability of a poly(lactic acid) membrane for periodontal guided tissue regeneration. Biomaterials 14:353–358

    Article  CAS  Google Scholar 

  25. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  Google Scholar 

  26. Michel V (2015) After soft tissues, bone, drug delivery and packaging, PLA aims at blood. Eur Polym J 68:516–552

    Article  Google Scholar 

  27. Zhao XW, Lin Y, Phil C, Fin CR, Michasel M (2013) Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretching. Polym Adv Technol 249:853–860

    Article  Google Scholar 

  28. Gao AL, Liu F, Xue LX (2014) Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis. J Membr Sci 452:390–399

    Article  CAS  Google Scholar 

  29. Li ZQ, Zhao XW, Ye L, Coates P, Caton-Rose F (2015) Fibrillation of chain branched poly (lactic acid) with improved blood compatibility and bionic structure. Chem Eng J 279:767–776

    Article  CAS  Google Scholar 

  30. Chen Y, Lin J, Wan YQ, Fei YN, Wang HB, Gao WD (2012) Preparation and blood compatibility of electrospun PLA/curcumin composite membranes. Polymer 13:1254–1258

    CAS  Google Scholar 

  31. Reno F, Paul G, Rizzi M, Gatti G, Marchese L (2013) Poly (D,L) lactic acid blending with vitamin e increases polymer hemocompatibility: an hydrophilic effect. J Appl Polym Sci 129(3):1527–1533

    Article  CAS  Google Scholar 

  32. Zhang W, Zhang JL, Jiang QX, Xia WS (2012) Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling. Carbohydr Polym 87:309–313

    Article  CAS  Google Scholar 

  33. Zheng BZ, Liu GY, Yao AW, Xiao YL, Du J, Guo Y, Xiao D, Hu Q, Choi (2014) Sensors & Actuators B Chem 195(5): 431–438

  34. Zhang W, Zhang JL, Xia WS (2014) Effect of ball-milling treatment on physicochemical and structural properties of chitosan. Int J Food Prop 17:26–37

    Article  CAS  Google Scholar 

  35. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets: II. Appl Phys Fluids 13:2221

    Article  CAS  Google Scholar 

  36. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in elec-trospinning. J Appl Phys 87(4):5–31

    Google Scholar 

  37. Theron A, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030

    Article  CAS  Google Scholar 

  38. Rouxhet PG, Genet MJ (2011) XPS analysis of bio-organic systems. Surf Interface Anal 43:1453–1470

    Article  CAS  Google Scholar 

  39. Maachou H, Genet MJ, Aliouche D, Christine C (2013) XPS analysis of chitosan–hydroxyapatite biomaterials: from elements to compounds. Surf Interface Anal 45:1088–1097

    Article  CAS  Google Scholar 

  40. Yin X, Chen J, Yuan W, Lin Q, Ji L, Liu F (2012) Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes. Polym Bull 68:1215–1226

    Article  CAS  Google Scholar 

  41. Hou X, Wang X, Zhu Q, Bao J, Mao C, Jiang L, Shen J (2010) Preparation of polypropylene superhydrophobic surface and its blood compatibility. Colloids Surf B: Biointerfaces 80:247–250

    Article  CAS  Google Scholar 

  42. Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK (2015) Synthesis and characterization of poly(lactic acid) based graft copolymers. React Funct Polym 93:47–67

    Article  CAS  Google Scholar 

  43. Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9:185–191

    Article  Google Scholar 

  44. Monteiro OA, Airoldi C (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26:119–128

    Article  CAS  Google Scholar 

  45. Karatum O, Steiner SA, Griffin JS, Shi WB, Plata DL (2016) Mechanically durable aerogel composites for oil capture and recovery. ACS Appl Mater Interfaces 81:215–224

    Article  Google Scholar 

  46. Hao PF, Lv C, Yao J, Niu ZH (2014) Wetting property of smooth and textured hydrophobic surfaces under condensation condition. Sci China Phys Mech Astron 57:2127–2132

    Article  Google Scholar 

  47. Nie CH, Ma L, Cheng C, Deng J, Zhao CS (2015) Nanofibrous heparin and heparin-mimicking multilayers as highly effective Endothelialization and Antithrombogenic coatings. Biomacromolecules 16:992–1001

    Article  CAS  Google Scholar 

  48. Nie CX, Ma L, Cheng C, Deng J, Zhao CS (2011) Nanofibrous heparin and heparin-mimicking multilayers as highly effective Endothelialization and Antithrombogenic coatings. Biomacromolecules 16:992–1001

    Article  Google Scholar 

  49. Li GC, Yang P, Qin W, Manfred FM, Zhou S, Huang N (2011) The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 32:4691–4703

    Article  CAS  Google Scholar 

  50. Esmaeil SLM, Azadeh G, Ahmad FI (2016) Improving blood compatibility of Polyethersulfone hollow fiber membranes via blending with sulfonated polyether ether ketone, Macromol. Mater Eng 1:1–8

    Google Scholar 

  51. Jansen AJG, Josefsson CE, Rumjantseva V, Liu QYP, Falet H, Bergmeier W, Cifuni SM, Sackstein R, Von Andrian HU, Wagner DD, Hartwig JH, Hoffmeister KM (2012) Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood 11(95):1263–1273

    Article  Google Scholar 

  52. Xiang T, Yue WW, Wang R, Liang S, Sun SD, Zhao CS (2013) Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids Surf B: Biointerfaces 110:15–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Project No. 21264007, 21466011). The authors appreciate the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqiong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Yin, X., Zeng, Q. et al. Preparation of carboxymethyl chitosan nanofibers through electrospinning the ball-milled nanopowders with poly (lactic acid) and the blood compatibility of the electrospun NCMC/PLA mats. J Polym Res 24, 60 (2017). https://doi.org/10.1007/s10965-017-1224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1224-5

Keywords

Navigation