Skip to main content
Log in

Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Seven Schiff bases were synthesized from O-carboxymethyl chitosan (CMC) and para-substituted benzaldehydes. The Schiff bases were characterized through Fourier Transform Infrared Spectroscopy, Carbon-13 Nuclear Magnetic Resonance (13C NMR), Distortionless Enhancement of Polarization Transfer (DEPT) 135 NMR, elemental analysis, and acid–base titration. Antibacterial activities of the Schiff bases against Escherichia coli (E. coli, ATCC 35218) and Staphylococcus aureus (S. aureus, ATCC 25923) were measured through the optical density method. Antibacterial activity of the Schiff bases differs from the substituent at the para position of benzaldehyde, and decreases as the sequence OCH3 > CH3 > H > F > Cl > Br > NO2. The IC50 of the Schiff base from 4-methoxylbenzylaldehyde against E. coli and S. aureus is 30 and 34 ppm, respectively, much lower than that of chitosan (53, 48 ppm) and CMC (58, 60 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang YM, Lee BN, Ko JH, Kim GH, Kang KN, Kim DY, Kim JH, Park YH, Chun HJ, Kim CH, Kim MS (2010) In vivo biocompatibility study of electrospun chitosan microfiber for tissue engineering. Int J Mol Sci 10:4140–4148

    Article  Google Scholar 

  2. VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59:585–590

    Article  CAS  Google Scholar 

  3. Ratajska M, Strobin G, Wisniewska-Wrona M, Ciechanska D, Struszczyk H, Boryniec S, Binias D, Binias W (2003) Studies on the biodegradation of chitosan in an aqueous medium. Fibres Text East Eur 11:75–79

    CAS  Google Scholar 

  4. Qin CQ, Du YM, Xiao L, Liu Y, Yu HG (2002) Moisture retention and antibacterial activity of modified chitosan by hydrogen peroxide. J Appl Polym Sci 86:1724–1730

    Article  CAS  Google Scholar 

  5. Vargas M, González-Martínez C (2002) Recent patents on food applications of chitosan. Recent Pat Food Nutr Agric 2:121–128

    Article  Google Scholar 

  6. Campos M, Cordi LV, Dura N, Mei L (2006) Antibacterial activity of chitosan solutions for wound dressing. Macromol Symp 245–246:515–518

    Article  Google Scholar 

  7. Fabris R, Chow CW, Drikas M (2010) Evaluation of chitosan as a natural coagulant for drinking water treatment. Water Sci Technol 61:2119–2128

    Article  CAS  Google Scholar 

  8. Rabea EI, Badawy ME, Stevens CV, Smagghe Guy, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 6:1457–1465

    Article  Google Scholar 

  9. Chung YC, Chen CY (2007) Antibacterial characteristics and activity of acid-soluble chitosan. Biores Technol 99:2806–2814

    Article  Google Scholar 

  10. Chuang YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936

    Google Scholar 

  11. Li Zh, Liu XF, Zhuang XP, Guan YL, Yao KD (2002) Manufacture and properties of chitosan/N, O-carboxymethylated chitosan/viscose rayon antibacterial fibers. J Appl Polym Sci 84:2049–2059

    Article  CAS  Google Scholar 

  12. Wang JT, Wang HD (2011) Preparation of soluble p-aminobenzoyl chitosan ester by Schiff’s base and Antibacterial activity of the derivatives. Int J Biol Macromol 48:523–529

    Article  CAS  Google Scholar 

  13. Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Yu LJ, Meng XH (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym 64:60–66

    Article  CAS  Google Scholar 

  14. Kim CH, Jang WC, Heung JC, Kyu SC (1997) Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym Bull 38:387–393

    Article  CAS  Google Scholar 

  15. Liu XF, Guan YL, Yang DZ, Li Z, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  CAS  Google Scholar 

  16. Xie WM, Xu PX, Wang W, Liu Q (2002) Preparation of water-soluble chitosan derivatives and their antibacterial activity. J Appl Polym Sci 85:1357–1361

    Article  CAS  Google Scholar 

  17. Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan–metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113

    Article  CAS  Google Scholar 

  18. Gu CJ, Sun B, Wu WH, Wang FC, Zhu MF (2007) Synthesis, characterization of copper-loaded carboxymethyl-chitosan nanoparticles with effective antibacterial activity. Macromol Symp 254:160–166

    CAS  Google Scholar 

  19. Slavica BI, Konstantinovic SS, Savic DS, Veljkovic VB, Gojgic-Cvijov G (2010) The impact of Schiff bases on antibiotic production by Streptomyces hygroscopicus. Med Chem Res 19:690–697

    Article  Google Scholar 

  20. Rehman W, Baloch MK, Muhammad B, Badshah A, Khan KM (2004) Characteristic spectral studies and in vitra anti fungal activity of some Schiff bases and their organotin(IV) complexes. Chin Sci Bull 2:119–122

    Article  Google Scholar 

  21. Varghese S, Muraleedharan Nair MK (2010) Antibacterial and antialgal studies of some lanthanide Schiff base complexes. Int J Appl Bio Pharm Tech 2:608–614

    Google Scholar 

  22. Jin X, Wang JT, Bai J (2009) Synthesis and antibacterial activity of Schiff base from chitosan and citral. Chem Ind Eng Proc 28:2014–2017

    CAS  Google Scholar 

  23. Xiao-xia J, Wang JT, Bai J (2010) Synthesis of Schiff base from chitosan and cinnamaldehyde and its antimicrobial activity. J Chem Eng Chinese Univ 24:645–650

    Google Scholar 

  24. Guo ZY, Chen R, Xing R, Liu S, Yu HH, Wang PB, Li CP, Li PC (2006) Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydr Res 341:351–354

    Article  CAS  Google Scholar 

  25. Fu XR, Shen Y, Jiang X, Huang D, Yan YQ (2011) Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydr Polym 85:221–227

    Article  CAS  Google Scholar 

  26. Ding CM, Yin PC, Song QP, Li N, Qiao YB (2005) Preparation and characterization of complete deacetylized chitosan. J East China Univ Sci Technol (Nat Sci Ed) 31(3):296–299

    CAS  Google Scholar 

  27. Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym 53:355–359

    Article  CAS  Google Scholar 

  28. Sun T, Xie WM, Xu PX (2004) Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydr Polym 58:379–382

    Article  CAS  Google Scholar 

  29. Park JW, Park DM, Park KK (1986) Characterization and metal ion binding properties of carboxymethylchitosan. Polymer (Korea) 10:641–645

    CAS  Google Scholar 

  30. Abreu FR, Campana-filho SP (2005) Preparation and characterization of carboxymethylchitosan. Polímeros [online] 2: 79–83

  31. Chen LY, Du YM, Wu HQ, Xiao L (2002) Relationship between molecular structure and moisture-retention ability of carboxymethyl chitin and chitosan. J Appl Polym Sci 83:1233–1241

    Article  CAS  Google Scholar 

  32. Liu P, Jia L, Tong QS, Meng XH, Feng YF, Shi JC (2008) Chiral ligands derived from carbohydrates crystal structure of methyl-4, 6-O-benzylidene-3-deoxy-3-(salicylideneamino)-a-d-altropyranoside. Chinese J Struct Chem 9:1119–1122

    Google Scholar 

  33. Young DH, Kauss H (1983) Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol 73:698–702

    Article  CAS  Google Scholar 

  34. Liu XF, Song L, Li L, Li SY, Yao KD (2007) Antibacterial effects of chitosan and its water-soluble derivatives on E. coli, Plasmids DNA, and mRNA. J Appl Polym Sci 103:3521–3528

    Article  CAS  Google Scholar 

  35. Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  Google Scholar 

  36. Hammett LP (1937) The effect of structure upon the reactions of organic compounds benzene derivatives. J Am Chem Soc 59:96

    Article  CAS  Google Scholar 

  37. Meneses L, Araya A, Pilaquinga F, Fuentealba P (2008) Relationship between the electrophilicity and σp Hammett constant in Baeyer-Villiger reaction. Chem Phys Lett 460:27–30

    Article  CAS  Google Scholar 

  38. Hou HN, Zhu JC, Qi ZD, Zhou B, LiI MY, Liu Y (2010) Antibacterial activity and structure-activity relationships of Schiff bases on Staphylococcus aureus by microcalorimetry. J Wuhan Univ Nat Sci 15:71–77

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the National Science Foundation of China (Project No. 50863002), Key Scientific and Technological Project of Haikou (Project No 2010-084), and the “Project 211” of Hainan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqiong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X., Chen, J., Yuan, W. et al. Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes. Polym. Bull. 68, 1215–1226 (2012). https://doi.org/10.1007/s00289-011-0599-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0599-4

Keywords

Navigation