Skip to main content
Log in

Graphene oxide reinforced poly(vinyl alcohol) composite fibers via template-oriented crystallization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here, a high breaking strength and high initial modulus fibers comprised of polyvinyl alcohol (PVA) and graphene oxide (GO) were fabricated via simple method of solution blending and wet-spinning. The structure and properties of these fibers were studied in details using two-dimensional X-ray diffractions, differential scanning calorimetry, one-dimensional X-ray diffractions, scanning electron microscopy, transmission electron microscopy, dynamic mechanical analysis and tensile test. Compared with pure PVA fiber, a 43 % improvement of breaking strength and an 81 % improvement of initial modulus were achieved by addition of 0.1 wt% of GO, and the results indicated that crystallization and orientation of GO/PVA composite fibers were both increased. GO could not only promote PVA chains ordered arrangement for increasing crystallization, but also act as a template for polymer amorphous orientation via the interactions between PVA and GO in the process of hot drawing and heat setting, which were responsible for the significant improvement in the mechanical properties of GO/PVA composite fibers.

GO could not only promote PVA chains ordered arrangement for increasing crystallization, but also act as a template for PVA amorphous orientation in the process of hot drawing. The amorphous orientation degree and the crystallization degree of PVA fibers were increased by adding GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sakurada I, Nukushina I, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  2. Sakurada I, Ito T, Nakamae K (1966) Elastic Moduli of the Crystal Lattices of Polymers. J Polym Sci Part C 15:75–91

    Article  Google Scholar 

  3. Grubb D, Kearney FR (1990) Modification of gel-drawn poly (vinyl alcohol) fibers with formaldehyde. J Appl Polym Sci 39:695–705

    Article  CAS  Google Scholar 

  4. Hwang KS, Lin CA, Lin CH (1994) Preparation of high-strength and high-modulus poly (vinyl alcohol) fibers by crosslinking wet spinning/multistep drawing method. J Appl Polym Sci 52:1181–1189

    Article  CAS  Google Scholar 

  5. Young RJ, Lu D, Day RJ, Knoff WF, Davis HA (1992) Relationship between structure and mechanical properties for aramid fibres. J Mater Sci 27:5431–5440

    Article  CAS  Google Scholar 

  6. Tadaoki L, Kohji T, Masamichi K, Hiroyuki T (1987) X-ray study of lattice tensile properties of fully extended aromatic polyamide fibers over a wide temperature range. Macromolecules 20:347–351

    Article  Google Scholar 

  7. Richard JD, Manfred B, Christian R (2006) Simultaneous Microfocus Raman and Microfocus XRD: probing the deformation of a single high-performance fiber. Macromolecules 39:4834–4840

    Article  Google Scholar 

  8. Arisoy B, HC W (2008) Material characteristics of high performance lightweight concrete reinforced with PVA. Const build. Mater 22:635–645

    Google Scholar 

  9. Mu B, Li Z, Peng J (2000) Short fiber-reinforced cementitious extruded plates with high percentage of slag and different fibers. Cem Concr Res 30:1277–1282

    Article  CAS  Google Scholar 

  10. Kazutaka K, Takashi I, Naohiko N and Mitsuhiro U (1987) Japan Patent JP62149910

  11. Hyon SH, Cha WI, Ikada Y (1989) Preparation of transparent poly (vinyl alcohol) hydrogel. Polym Bull 22:119–122

    Article  CAS  Google Scholar 

  12. Yamaura K, Kumakura R (2000) Gel-spinning of partially saponificated poly (vinyl alcohol. J Appl Polym Sci 77:2872–2876

    Article  CAS  Google Scholar 

  13. Nishino T, Kani S, Gotoh K, Nakamae K (2002) Melt processing of poly (vinyl alcohol) through blending with sugar pendant polymer. Polymer 43:2869–2873

    Article  CAS  Google Scholar 

  14. Jeong JS, Moon JS, Jeon SY, Park JH, et al. (2007) Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films 515:5136–5141

    Article  CAS  Google Scholar 

  15. XZ X, Uddin AJ, Aoki K, Gotoh Y, et al. (2010) Fabrication of high strength PVA/SWCNT composite fibers by gel spinning. Carbon 48:1977–1984

    Article  Google Scholar 

  16. Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443

    Article  CAS  Google Scholar 

  17. Minus ML, Chae HG, Kumar S (2006) Single wall carbon nanotube templated oriented crystallization of poly (vinyl alcohol. Polymer 47:3705–3710

    Article  CAS  Google Scholar 

  18. Dikin DA, Stankovich S, Zimney EJ, Piner RD, et al. (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  19. Gomez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049

    Article  CAS  Google Scholar 

  20. McAllister MJ, Li JL, Adamson DH, Schniepp HC, et al. (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4369

    Article  Google Scholar 

  21. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, et al. (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  22. Si YC, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  23. Ma PC, Siddiqui NA, Marom G, et al. (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A 41:1345–1367

    Article  Google Scholar 

  24. Mi Y, Zhang X, Zhou S, et al. (2007) Morphological and mechanical properties of bile salt modified multi-walled carbon nanotube/poly (vinyl alcohol) nanocomposites. Compos Part A 38:2041–2046

    Article  Google Scholar 

  25. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A 42:2126–2142

    Article  Google Scholar 

  26. Liang JJ, Huang Y, Zhang L, Wang Y, et al. (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  CAS  Google Scholar 

  27. Yang XM, Shang SM, Li L (2010) Layer-structured poly(vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120:1355–1360

    Article  Google Scholar 

  28. Wang JC, Wang XB, XB X, Zhang M, Shang XP (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822

    Article  CAS  Google Scholar 

  29. Lee S, Hong JY, Jang J (2013) The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol. Polym Int 62:901–908

    Article  CAS  Google Scholar 

  30. Li J, Shao L, Zhou X, Wang YH (2014) Fabrication of high strength PVA/rGO composite fibers by gel spinning. RSC Adv 4:43612–43618

    Article  CAS  Google Scholar 

  31. Uddin AJ, Narusawa T, Gotoh Y (2011) Enhancing mechanical properties of gel-spun polyvinylAlcohol fibers by iodine doping. Polym Eng Sci 51:647–653

    Article  CAS  Google Scholar 

  32. Paul DG, David TG (1988) Effect of drawing on the α relaxation of poly(vinyl alcohol. J Polym Sci Part B 26:2509–2523

    Article  Google Scholar 

  33. Takahiro Y, Yuji H, Di T, Daiki M, et al. (2012) Orientation of poly(vinyl alcohol) nanofiber and crystallites in non-woven electrospun nanofiber mats under uniaxial stretching. Polymer 53:4702–4708

    Article  Google Scholar 

  34. Cano M, Khan U, Sainsbury T, O'Neill A, Wang ZM, McGovern IT, Maser WK, Benito AM, Coleman JN (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371

    Article  CAS  Google Scholar 

  35. Ma JJ, Li Y, Yin XD, Xu Y, Yue J, Bao JJ, Zhao T (2016) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv 6:49448–49458

    Article  CAS  Google Scholar 

  36. Dreyer DR, Park SJ, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  37. Bao LC, Guo YQ, Song L, Hu Y (2011) Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J Mater Chem 21:13942–13950

    Article  CAS  Google Scholar 

  38. Chen WF, Yan LF, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152

    Article  CAS  Google Scholar 

  39. Finch, CA (1992) Polymer alcohol developments. John Wiley and Sons Ltd., Chichester and New York

  40. Nagai E, Sagane S (1955) Studies on PVA. 6. The change of IR spectrum with heating of PVA, Kobunshi. Kagaku 12

  41. Assender HE, Windle AH (1998) Crystallinity in poly (vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39:4295–4302

    Article  CAS  Google Scholar 

  42. Yamaura K, Tanigami T, Hayashi N, Kosuda KI, Okuda S, Takemura Y, Itoh M, Matsuzawa S (1900) Preparation of high modulus poly(vinyl alcohol) by drawing. Journal of Appied polymer. Science 40:905–916

    Google Scholar 

  43. Miaudet P, Badaire S, Maugey M, Derré A, Pichot V, Launois P, Poulin P, Zakri C (2005) Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett 11:2212–2215

    Article  Google Scholar 

  44. Suzuki A, Murata H, Kunugi T (1998) Application of a high-tension annealing method to nylon 66 fibres. Polymer 39:1351–1355

    Article  CAS  Google Scholar 

  45. Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Endo R, Hara T (2004) Melt spinning and laser-heated drawing of a new Semiaromatic polyamide, PA9-T fiber. J Polym Sci B Polym Phys 42:433–444

    Article  CAS  Google Scholar 

  46. Gracía-Gutiérrez MC, Nogales A, Rued DR, Domingo C, et al. (2006) Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer 47:341–345

    Article  Google Scholar 

  47. Yao ZL, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites. J Am Chem Soc 125:16015–16024

    Article  CAS  Google Scholar 

  48. Ken-Hsuan L, Shigeru A, Ahmed AA, Christopher M (2014) Does graphene change Tg of nanocomposites? Macromolecules 47:8311–8319

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the National Natural Science Foundation of China with grant No.51273116 and the financial support of Science & Technology Support Program of Sichuan Province with grant No.2016GZ0376 and the graphene oxide support of the Chongqing Institute of Green and Intelligent Technology (Chongqing, China) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengqing Liu or Jianjun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, P., Jia, E. et al. Graphene oxide reinforced poly(vinyl alcohol) composite fibers via template-oriented crystallization. J Polym Res 23, 215 (2016). https://doi.org/10.1007/s10965-016-1109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1109-z

Keywords

Navigation