Skip to main content
Log in

Phase structure and mechanical properties of disentangled ultra-high molecular weight polyethylene/polyhedral oligomeric silsesquioxane nanocomposites in a solid state

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene (UHMWPE)/disilanolisobutyl polyhedral oligomeric silsesquioxane (POSS) nanocomposites in a disentangled state were synthesized by in situ ethylene polymerization. This is the first report of a detailed study on the phase structure and mechanical properties of disentangled UHMWPE/ POSS nanocomposites in a solid state. The phase structure and chain dynamics of UHMWPE nanocomposites were characterized using wide-line proton NMR and 13C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR). The results showed that a strong interaction between the POSS and nascent UHMWPE matrix occurred in a solid state, especially in the intermediate and monoclinic crystalline phases. This strong interaction between POSS particles and UHMWPE chains may result in improved melt recovery properties. Mechanical testing indicated that the lowest friction coefficients and highest breaking strength were achieved when 1 wt% loading of POSS was incorporated. The influence of the microstructure on lubrication and mechanical properties was also studied.

Probable mechanism of polymer growth during ethylene polymerization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jones RL, Armoush M (2009) Catalysts for UHMWPE. Macromol Symp 88:283–284

    Google Scholar 

  2. Sun YS, Duan YR, Chen XY, Zhang Q, Jin XF, Li JX, Ma Y, Sun L, Wang QR (2006) Research on the molecular entanglement and disentanglement in the dry spinning process of UHMWPE/decalin solution. J Appl Polym Sci 102:864–875

    Article  CAS  Google Scholar 

  3. Jauffres D, Lame O, Vigier G, Dore F (2008) How Nascent Structure of Semicrystalline Polymer Powders Enhances Bulk Mechanical Properties. Macromolecules 41:9793–9801

    Article  CAS  Google Scholar 

  4. Sharma KG (2005) Easily Processable Ultra High Molecular Weight Polyethylene with Narrow Molecular Weight Distribution.Ph.D. Thesis, Eindhoven University of Technology

  5. Rizwan M, Mcgarry FJ (2004) Processing of ultra-high molecular weight polyethylene by hot isostatic pressing, and the effect of processing parameters on its microstructure. Polym Eng Sci 44:1848–1857

    Article  Google Scholar 

  6. Park K, Mishra S, Lewis G, Losby J, Fan ZB, Park JB (2004) Biomaterials Quasi-static and dynamic nanoindentation studies on highly crosslinked ultra-high-molecular-weight polyethylene. 25:2427–2436

  7. Deng M, Shalaby SW (1997) Validation of a small punch testing technique to characterize the mechanical behaviour of ultra-high-molecular-weight polyethylene. Biomaterials 18:1659–1663

    Article  Google Scholar 

  8. Wright TM, Astion DJ, Bansal M, Rimnac CM, Green T, Insall JN, Robinson RP (1988) Failure of carbon fiber-reinforced polyethylene total knee-replacement components. A report of two cases. J Bone Joint Surg Am 70:926–932

    CAS  Google Scholar 

  9. Lewis G (2001) Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 22:371–401

    Article  CAS  Google Scholar 

  10. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785

    Article  CAS  Google Scholar 

  11. Bahuleyan BK, Atieh MA, De SK, Khan MJ, Al-Harthi MA (2012) Easy one-pot method to control the morphology of polyethylene/carbon nanotube nanocomposites using metallocene catalysts. J Polym Res 19:9744–9752

    Article  Google Scholar 

  12. Hu Z, Liu CB (2013) Polyethylene/graphite oxide nanocomposites obtained by in situ polymerization using modified graphite oxide–supported metallocene catalysts. J Polym Res 20:39–47

    Article  CAS  Google Scholar 

  13. Stürzel M, Kempe F, Thomann Y, Mark S, Enders M, Mülhaupt R (2012) Novel Graphene UHMWPE Nanocomposites Prepared by Polymerization Filling Using Single-Site Catalysts Supported on Functionalized Graphene Nanosheet Dispersions. Macromolecules 45:6878–6887

    Article  Google Scholar 

  14. Ronca S, Forte G, Tjaden H, Yao YF, Rastogi S (2012) Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites. Polymer 53:2897–2907

    Article  CAS  Google Scholar 

  15. Li W, Guan C, Xu J, Mu JS, Gong DR, Chen ZR, Zhou Q (2014) Disentangled UHMWPE/POSS nanocomposites prepared by ethylene in situ polymerization. Polymer 55:1792–1798

    Article  CAS  Google Scholar 

  16. Blümich B (2000) NMR Imaging of Materials. Clarendon Press, Oxford

    Google Scholar 

  17. Yao YF, Jiang SZ, Rastogi S (2014) 13C Solid State NMR Characterization of Structure and Orientation Development in the Narrow and Broad Molar Mass Disentangled UHMWPE. Macromolecules 47:1371–1382

    Article  CAS  Google Scholar 

  18. Li W, Adams A, Wang JD, Blümich B, Yang YR (2010) Polyethylene/palygorskite nanocomposites: Preparation by in situ polymerization and their characterization. Polymer 51:4686–4697

    Article  CAS  Google Scholar 

  19. Li W, Jiang BB, Buda A, Wang JD, Blümich B, Yang YR, Zheng J (2010) An NMR investigation on the phase structure and molecular mobility of the novel exfoliated polyethylene/palygorskite nanocomposites. J Polym Sci Part B: Polym Phy 48:1363–1371

    Article  CAS  Google Scholar 

  20. Massiot D, Fayon F, Capron M, King I, Le Calve S, Alonso B, Durand JQ, Bujoli B, Gan ZH, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    Article  CAS  Google Scholar 

  21. Earl WL, Vanderhart DL (1979) Observations in Solid Polyethylenes by Carbon-13 Nuclear Magnetic Resonance with Magic Angle Sample Spinning. Macromolecules 12:762–767

    Article  CAS  Google Scholar 

  22. Tzou DL, Schmidt-Rohr K, Spiess HW (1994) Solid-state n.m.r. studies of crystalline phases in gel-spun ultrahigh molecular weight polyethylene. Polymer 35:4728–4733

    Article  CAS  Google Scholar 

  23. Hillebrand L, Schmidt A, Bolz A, Hess M, Meier WVR, Velden G (1998) Nuclear Magnetic Resonance Detection of Two Distinctly Different Chains in the Orthorhombic Crystalline Phase of Polyethylenes. Macromolecules 31:5010–5021

    Article  CAS  Google Scholar 

  24. Milliman HW, Ishida H, Schiraldi DA (2012) Structure property relationships and the role of processing in the reinforcement of nylon 6-poss blends. Macromolecules 45:4650–4657

    Article  CAS  Google Scholar 

  25. Seguela R (2005) Critical review of the molecular topology of semicrystalline polymers: The origin and assessment of intercrystalline tie molecules and chain entanglements. J Polym Sci, Part B: Polym Phys 43:1729–1748

    Article  CAS  Google Scholar 

  26. Soares JBP, Abbott RF, Kim JD (2000) Environmental stress cracking resistance of polyethylene: The use of CRYSTAF and SEC to establish structure–property relationships. J Polym Sci, Part B: Polym Phys 38:1267–1275

    Article  CAS  Google Scholar 

  27. Han J, Ding SY, Zheng WG, Li WY, Li H (2013) Microstructure and anti- wear and corrosion performances of novel UHMWPE/graphene-nanosheet composite coatings deposited by flame spraying. Polym Adv Tech 24:888–894

    Article  CAS  Google Scholar 

  28. Shan CLP, Soares JBP, Penlidis A (2003) HDPE/LLDPE reactor blends with bimodal microstructures— Part II: rheological properties. Polymer 44:177–185

    Article  CAS  Google Scholar 

  29. Zhang QH, Lippits DR, Rastogi S (2006) Dispersion and Rheological Aspects of SWNTs in Ultrahigh Molecular Weight Polyethylene. Macromolecules 39:658–666

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Natural Science Foundation of China Project (No. 21206078), the Key Innovation Team of Zhejiang Province (2011R50001-5, -11), sponsored by the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Yang, H. & Li, W. Phase structure and mechanical properties of disentangled ultra-high molecular weight polyethylene/polyhedral oligomeric silsesquioxane nanocomposites in a solid state. J Polym Res 22, 223 (2015). https://doi.org/10.1007/s10965-015-0867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0867-3

Keywords

Navigation