Skip to main content
Log in

Ultra-rapid polyamidation reaction of optically active aromatic diacid containing methionine moieties with aromatic diamines under microwave irradiation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel aromatic dicarboxylic acid monomer, 5-[4-methylthio-2-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)butanoylamino]isophthalic acid was synthesized starting from cis-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid anhydride and L-methionine in four steps. A highly effective, very fast microwave method is applied to synthesize optically active and thermally stable polyamides (PA)s under microwave heating for only 3 min. Generally, better yields are obtained under faster and cleaner reactions when compared to those from conventional heating. Therefore, this method could considerably reduce the synthesis time, cost, and energy. The resulting PAs had inherent viscosities in the range of 0.32–0.59 dL/g. All of the these polymers having bulky anthracenic and amino acid functionality in the side chain showed excellent solubility and readily dissolved in various solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide and N,N-dimethylformamide. PAs were thermally stable, with 10 % weight loss recorded at 400 °C and 450 °C under nitrogen atmosphere, and char yields at 800 °C higher than 41 % and glass transition temperature above 168 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Bogdal D (2006) Microwave-assisted organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  2. Proinsias K, Karczewski M, Zieleniewska A, Gryko D (2014) Microwave-assisted cobinamide synthesis. J Org Chem 79:7752–7757

    Article  CAS  Google Scholar 

  3. Ko YC, Tsai CF, Wang CC, Dhurandhare VM, Hu PL, Su TY, Lico LS, Zulueta MML, Hung SC (2014) Microwave-assisted one-pot synthesis of 1,6-anhydrosugars and orthogonally protected thioglycosides. J Am Chem Soc 136:14425–14431

    Article  CAS  Google Scholar 

  4. Goganian AM, Hamishehkar H, Arsalani N, Khiabani HK (2015) Microwave-promoted synthesis of smart superporous hydrogel for the development of gastroretentive drug delivery system. Adv Polym Technol 34:21490–21497

    Article  Google Scholar 

  5. Kumar GS, Zeller M, Frasso MA, Prasada KJR (2015) InCl3 promoted synthesis of pyrano[3,2-h]quinolines via microwave irradiation. J Heterocyclic Chem 52:926–930

    Article  CAS  Google Scholar 

  6. Tiwari M, Kumar A, Umre HS, Prakash R (2015) Microwave-assisted chemical synthesis of conducting polyindole: Study of electrical property using Schottky junction. J Appl Polym Sci 132:42192

    Article  Google Scholar 

  7. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  8. Kempe K, Becer CR, Schubert US (2011) Microwave-assisted polymerizations: recent status and future perspectives. Macromolecules 44:5825–5842

    Article  CAS  Google Scholar 

  9. Tally M, Atassi Y (2015) Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly(acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res 22:181–193

    Article  Google Scholar 

  10. Mallakpour S, Rafiee Z (2008) Application of microwave-assisted reactions in step-growth polymerization: a review. Iran Polym J 17:907–935

    CAS  Google Scholar 

  11. Wiesbrock F, Hoogenboom R, Schubert US (2004) Microwave‐assisted polymer synthesis: state‐of‐the‐art and future perspectives. Macromol Rapid Commun 25:1739–1764

    Article  CAS  Google Scholar 

  12. Goganian AM, Arsalani N, Khiabani HK, Zakerhamidi MS (2014) Microwave promoted synthesis of smart superporous poly (dimethylaminoethyl methacrylate-co-acrylamide) hydrogels and study of Kamlet-Abboud-Taft polarity functions for obtained materials. J Polym Res 21:484–493

    Article  Google Scholar 

  13. Cassidy PE (1980) Thermally stable polymers. Marcel Dekker, New York

    Google Scholar 

  14. Yang HH (1989) Aromatic high-strength fibers. Wiley, New York, pp 66–289

    Google Scholar 

  15. Mallakpour S, Rafiee Z (2011) Preparation and characterization of optically active polyamides based on 3-phenyl-2-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)propanoylamino in 1,3-dipropylimidazolium bromide. Macromol Res 19:332–337

    Article  CAS  Google Scholar 

  16. Mallakpour S, Rafiee Z (2008) Safe and fast polyamidation of 5-[4-(2-phthalimidiylpropanoylamino)benzoylamino]isophthalic acid with aromatic diamines in ionic liquid under microwave irradiation. Polymer 49:3007–3013

    Article  CAS  Google Scholar 

  17. Hsiao SH, Chou YT (2014) Synthesis and electrochromic properties of aromatic polyamides with pendent triphenylamine units. Macromol Chem Phys 215:958–970

    Article  CAS  Google Scholar 

  18. Hsiao SH, Wang HM, Chou JS, Guo W (2012) Synthesis and characterization of novel organosoluble and thermally stable polyamides bearing triptycene in their backbones. J Polym Res 19:9902–9912

    Article  Google Scholar 

  19. Liou GS, Yen HJ, Su YT, Lin HY (2007) Synthesis and properties of wholly aromatic polymers bearing cardo fluorene moieties. J Polym Sci Part A Polym Chem 45:4352–4363

    Article  CAS  Google Scholar 

  20. He L, Chao D, Zhang C, Jia X (2011) Novel electroactive aromatic polyamide with oligoanilines and azo groups in the backbone: synthesis, characterization and dielectric properties. J Polym Res 19:9746–9755

    Article  Google Scholar 

  21. Ayala V, Maya EM, Garcia JM, De La Campa JG, Lozano AE, De Abajo J (2005) Synthesis, characterization, and water sorption properties of new aromatic polyamides. J Polym Sci Part A: Polym Chem 43:112–121

    Article  CAS  Google Scholar 

  22. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) A field guide to foldamers. Chem Rev 101:3893–4012

    Article  CAS  Google Scholar 

  23. Bechaouch S, Coutin B, Sekiguchi H (1996) Improvement of the synthesis of poly(L-cystyl-L-cystine): a new biodegradable polymer. Macromol Chem Phys 197:1661–1668

    Article  CAS  Google Scholar 

  24. Pascual S, Gachard I, Coutin B, Sekiguchi H (2001) Synthesis of new polyamides from natural monomers: L-malic acid and L-Lysine. Macromol Chem Phys 202:873–881

    Article  CAS  Google Scholar 

  25. Katsarava R (2003) Active polycondensation: from peptide chemistry to amino acid based biodegradable polymers. Macromol Symp 199:419–429

    Article  CAS  Google Scholar 

  26. Baughman TW, Wagener KB (2005) Recent advances in ADMET polymerization, metathesis polymerization. Adv Polym Sci 176:1–42

    Article  CAS  Google Scholar 

  27. Kim JH, Son CM, Jeon YS, Choe WS (2011) Synthesis and characterization of poly(aspartic acid) derivatives conjugated with various amino acids. J Polym Res 18:881–890

    Article  CAS  Google Scholar 

  28. Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  29. Hodge P (1990) Innovation and perspectives in solid phase synthesis. In: Epton, R. (ed.) Collected papers, First current medicinal chemistry, 1996. 371 International Symposium, Vol. 3, No. 5, p 273. Oxford Eng. SPSS (UK) Ltd., Birmingham, England:

  30. Tang K, Green MM, Cheon KS, Selinger JV, Garetz BA (2003) Chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers: from dilute solution to the lyotropic liquid crystal state. J Am Chem Soc 125:7313–7323

    Article  CAS  Google Scholar 

  31. Thiem J, Bachmann F (1993) Synthesis and properties of polyamides from anhydro- and dianhydroalditols. Makromol Chem 194:1035–1057

    Article  CAS  Google Scholar 

  32. Sioncke S, Verbiest T, Persoons A (2003) Second-order nonlinear optical properties of chiral materials. Mater Sci Eng R 42:115–155

    Article  Google Scholar 

  33. Bachmann WE, Kloetzel MC (1938) The reaction between maleic anhydride and. polycyclic hydrocarbons. J Am Chem Soc 60:481–485

    Article  CAS  Google Scholar 

  34. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymer. Elsevier Scientific Publishing Company, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Rafiee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, Z. Ultra-rapid polyamidation reaction of optically active aromatic diacid containing methionine moieties with aromatic diamines under microwave irradiation. J Polym Res 22, 228 (2015). https://doi.org/10.1007/s10965-015-0864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0864-6

Keywords

Navigation