Skip to main content
Log in

Molecular chain heterogeneity of a branched polyethylene resin using cross-fractionation techniques

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The typical standard long chain branching (LCB) polyethylene (PE) SRM1476 is issued by the American National Bureau of Standards, which is widely used as a standard reference material in chromatographic experiments. Although some works have been reported in literatures, they are not consistent, such as the data about its molecular weight and molecular weight distribution. Therefore, it is necessary to further investigate the microstructure features of SRM1476 in order to better serve as a reference object in comparison with other unknown resins. In this study, the molecular chain heterogeneity of SRM1476 is investigated extensively and compared with the linear PE SRM1475. Based on the characterization of the original sample, SRM1476 actually has both LCB and short chain branching (SCB) structures, as well as the SCB content is more than LCB content in 13C-NMR results. After successive self-nucleation and annealing (SSA) thermal fractionation, SRM1476 shows a broad-range endotherm with multiple melting peaks (more than eight peaks), which proves the molecular chain heterogeneity in SRM1476. SRM1476 is fractionated into nine fractions by preparative temperature rising elution fractionation (TREF). At the high elution temperature region, the amounts of fractions are more than 90 %, and their molecular weights are higher. At the low elution temperature region below 50 °C, molecular weights of fractions are lower and their amounts are less than 5 %. Differential scanning calorimetry (DSC) melting curves of TREF fractions with higher elution temperatures shift toward higher temperature with sharper melting peaks. In the results of TREF-SSA cross-fractionation, each fraction shows a broad-range endotherm with multiple melting peaks that shift toward the high elution temperature region with the elution temperature. The arithmetic mean methylene sequence lengths of TREF fractions gradually increase from 33 to 105 as elution temperature increases. Results from TREF-DSC and TREF-SSA cross-fractionations indicate that SRM1476 and its TREF fractions have both intramolecular and intermolecular heterogeneity.

The typical long chain branching PE SRM1476 is studied extensively using different cross-fractionation methods, which actually contains both LCB and SCB structures. Moreover, it is found that TREF can separates semi-crystalline polymers according to short branching chains, but also has a certain separating ability for long branching chains. The cross-fractionation methods from the combination of TREF with other techniques are very effective approaches in studying molecular chain heterogeneities of branched PE resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Stadler FJ, Karimkhani V (2011) Correlations between the characteristic rheological quantities and molecular structure of long-chain branched metallocene catalyzed polyethylenes. Macromolecules 44(13):5401–5413

    Article  CAS  Google Scholar 

  2. Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Münstedt H (2006) Influence of type and content of various comonomers on long-chain branching of ethene/α-olefin copolymers. Macromolecules 39(4):1474–1482

    Article  CAS  Google Scholar 

  3. Wang C, Chu MC, Lin TL, Lai SM, Shih HH, Yang JC (2001) Microstructures of a highly short-chain branched polyethylene. Polymer 42(4):1733–1741

    Article  CAS  Google Scholar 

  4. Xu JT, Xu XR, Feng LX (2000) Short chain branching distributions of metallocene-based ethylene copolymers. Eur Polym J 36(4):685–693

    Article  CAS  Google Scholar 

  5. Tackx P, Tacx J (1998) Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS). Polymer 39(14):3109–3113

    Article  CAS  Google Scholar 

  6. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21(5):557–563

    Article  CAS  Google Scholar 

  7. Galland GB, Quijada R, Rojas R, Bazan G, Komon ZJA (2002) NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules 35(2):339–345

    Article  CAS  Google Scholar 

  8. Yamaguchi M, Wagner MH (2006) Impact of processing history on rheological properties for branched polypropylene. Polymer 47(10):3629–3635

    Article  CAS  Google Scholar 

  9. Pasch H, Malik MI, Macko T (2013) Recent advances in high-temperature fractionation of polyolefins. Adv Polym Sci 251:77–140

    Article  CAS  Google Scholar 

  10. Wild L (1991) Temperature rising elution fractionation. Adv Polym Sci 98:1–47

    Article  CAS  Google Scholar 

  11. Anantawaraskul S, Soares JBP, Wood-Adams PM (2005) Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv Polym Sci 182:1–54

    Article  CAS  Google Scholar 

  12. Monrabal B (2013) Polyolefin characterization: recent advances in separation techniques. Adv Polym Sci 257:203–251

    Article  CAS  Google Scholar 

  13. Xu JT, Feng LX (2000) Application of temperature rising elution fractionation in polyolefins. Eur Polym J 36(5):867–878

    Article  CAS  Google Scholar 

  14. Zhu HJ, Monrabal B, Han CC, Wang DJ (2008) Phase structure and crystallization behavior of polypropylene in-reactor alloys: insights from both inter- and intramolecular compositional heterogeneity. Macromolecules 41(3):826–833

    Article  CAS  Google Scholar 

  15. Mirabella FM (2014) High temperature elution peaks in temperature rising elution fractionation (TREF): the behavior of high molecular weight species. J Liq Chromatogr Relat Technol 37(4):516–527

    Article  CAS  Google Scholar 

  16. Boborodea A, Mirabella FM (2014) Elution temperatures of polyethylene copolymers in temperature rising elution fractionation (TREF): comparison in xylene and trichlorobenzene diluents. Int J Polym Anal Charact 19(5):468–473

    Article  CAS  Google Scholar 

  17. Monrabal B (1994) Crystallization analysis fractionation: a new technique for the analysis of branching distribution in polyolefins. J Appl Polym Sci 52(4):491–499

    Article  CAS  Google Scholar 

  18. Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Crystallization elution fractionation. A new separation process for polyolefin resins. Macromol Symp 257(1):71–79

    Article  CAS  Google Scholar 

  19. Monrabal B, Romero L, Mayo N, Sancho-Tello J (2009) Advances in crystallization elution fractionation. Macromol Symp 282:14–24

    Article  CAS  Google Scholar 

  20. Müller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  21. Zhang MQ, Wanke SE (2003) Quantitative determination of short-chain branching content and distribution in commercial polyethylenes by thermally fractionated differential scanning calorimetry. Polym Eng Sci 43(12):1878–1888

    Article  CAS  Google Scholar 

  22. Xue YH, Wang YH, Fan YD, Yang HR, Tang T, Bo SQ, Ji XL (2014) Microstructure characterization of short-chain branching polyethylene with differential scanning calorimetry and successive selfnucleation/annealing thermal fractionation. Chin J Polym Sci 32(6):751–757

    Article  CAS  Google Scholar 

  23. Müller AJ, Hernández ZH, Arnal ML, Sánchez JJ (1997) Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull 39(4):465–472

    Article  Google Scholar 

  24. Cheruthazhekatt S, Pijpers TFJ, Mathot VBF, Pasch H (2013) Combination of TREF, high-temperature HPLC, FTIR and HPer DSC for the comprehensive analysis of complex polypropylene copolymers. Anal Bioanal Chem 405(28):8995–9007

    Article  CAS  Google Scholar 

  25. Ortin A, Monrabal B, Sancho-Tello J (2007) Development of an automated cross-fractionation apparatus (TREF-GPC) for a full characterization, of the bivariate distribution of polyolefins. Macromol Symp 257:13–28

    Article  CAS  Google Scholar 

  26. Yau WW (2007) Examples of using 3D-GPC-TREF for polyolefin characterization. Macromol Symp 257:29–45

    Article  CAS  Google Scholar 

  27. Zhang MQ, Lynch DT, Wanke SE (2000) Characterization of commercial linear low-density polyethylene by TREF-DSC and TREF-SEC cross-fractionation. J Appl Polym Sci 75(7):960–967

    Article  CAS  Google Scholar 

  28. Mahdavi H, Enayati-Nook M (2008) Characterization and microstructure study of low-density polyethylene by Fourier transform infrared spectroscopy and temperature rising elution fractionation. J Appl Polym Sci 109(6):3492–3501

    Article  CAS  Google Scholar 

  29. Wagner HL, McCrackin FL (1977) Branching and molecular weight distribution of polyethylene SRM 1476. J Appl Polym Sci 21(10):2833–2845

    Article  CAS  Google Scholar 

  30. Wild L, Ranganath R, Barlow A (1977) Gel permeation chromatography of polyethylene. II. Rapid evaluation of long-chain branching and molecular weight distribution. J Appl Polym Sci 21(12):3331–3343

    Article  CAS  Google Scholar 

  31. MacRury TB, McConnell ML (1979) Measurement of the absolute molecular weight and molecular weight distribution of polyolefins using low-angle laser light scattering. J Appl Polym Sci 24(3):651–662

    Article  CAS  Google Scholar 

  32. Pang S, Rudin A (1992) Use of continuous viscometer and light scattering detectors in characterization of polyolefins: comparisons of data from individual and combined detectors. J Appl Polym Sci 46(5):763–773

    Article  CAS  Google Scholar 

  33. Beer F, Capaccio G, Rose LJ (1999) High molecular weight tail and long-chain branching in SRM 1476 polyethylene. J Appl Polym Sci 73(14):2807–2812

    Article  CAS  Google Scholar 

  34. Striegel AM, Krejsa MR (2000) Complementarity of universal calibration SEC and 13C NMR in determining the branching state of polyethylene. J Polym Sci B Polym Phys 38(23):3120–3135

    Article  CAS  Google Scholar 

  35. Beer F, Capaccio G, Rose LJ (2001) High molecular weight tail and long-chain branching in low-density polyethylenes. J Appl Polym Sci 80(14):2815–2822

    Article  CAS  Google Scholar 

  36. D’Agnillo L, Soares JBP, Penlidis A (2002) Round-robin experiment in high-temperature gel permeation chromatography. J Polym Sci B Polym Phys 40(10):905–921

    Article  Google Scholar 

  37. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α-phase) investigated by differential scanning calorimetry. J Polym Sci B Polym Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  38. Lorenzo AT, Arnal ML, Muller AJ, de Fierro AB, Abetz V (2006) High speed SSA thermal fractionation and limitations to the determination of lamellar sizes and their distributions. Macromol Chem Phys 207(1):39–49

    Article  CAS  Google Scholar 

  39. Müller AJ, Michell RM, Pérez RA, Lorenzo AT (2015) Successive Self-nucleation and Annealing (SSA): correct design of thermal protocol and applications. Eur Polym J 65:132–154

    Article  Google Scholar 

  40. Xue YH, Bo SQ, Ji XL (2015) Parameters optimization of successive self-nucleation/annealing thermal fractionation experiments for polyethylene resin and comparison with step crystallization. Acta Polym Sin 3:326–330

    Google Scholar 

  41. Yau WW, Gillespie D (2001) New approaches using MW-sensitive detectors in GPC-TREF for polyolefin characterization. Polymer 42(21):8947–8958

    Article  CAS  Google Scholar 

  42. Xue YH, Fan YD, Bo SQ, Ji XL (2015) Microstructure characterization of a complex branched low-density polyethylene. Chin J Polym Sci 33(3):508–522

    Article  CAS  Google Scholar 

  43. Randall JC (1973) 13C NMR of ethylene-1-olefin copolymers extension to short-chain branch distribution in a low-density polyethylene. J Polym Sci B Polym Phys 11(2):275–287

    Article  CAS  Google Scholar 

  44. Randall JC, Zoepfl FJ, Silverman J (1983) A 13C NMR study of radiation-induced long-chain branching in polyethylene. Makromol Chem Rapid Commun 4(3):149–157

    Article  CAS  Google Scholar 

  45. Galland GB, de Souza RF, Mauler RS, Nunes FF (1999) 13C NMR determination of the composition of linear low-density polyethylene obtained with [eta(3)-methallyl-nickel-diimine] PF6 complex. Macromolecules 32(5):1620–1625

    Article  CAS  Google Scholar 

  46. Chen S, Huang Q, Wu L, Wang Y, Lou L (2012) Progress in the research of molecular heterogeniety in short-chain branched polyethylene by metallocene catalyst. Polym Bull 4:97–103

    Google Scholar 

  47. Perez CJ, Failla MD, Carella JM (2012) Advantageous use of SSA technique to observe effects of thickness, antioxidant and oxygen in gamma irradiated low density polyethylene. Thermochim Acta 538:67–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (2005CB623806) and National Natural Science Foundation of China (20734006, 50921062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangling Ji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Bo, S. & Ji, X. Molecular chain heterogeneity of a branched polyethylene resin using cross-fractionation techniques. J Polym Res 22, 160 (2015). https://doi.org/10.1007/s10965-015-0809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0809-0

Keywords

Navigation