Skip to main content
Log in

Enhanced piezoresistance repeatability of carbon nanotube/silicane composites achieved using radiation-induced graft polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel and effective technique was devised for the synthesis of electrically conductive, rubber-based MWCNT (multiwall carbon nanotube) composites, using radiation-induced graft polymerization. The chemical structure and morphology of the grafted MWCNTs were investigated using micro-FTIR, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The tetravinyl tetramethyl cyelo tetrasiloxane-modified MWNTs were mixed with poly (vinylmethylsiloxane) (PVMS). After vulcanization, the nanotubes were cross-linked with a polymer matrix. The resistance was measured with respect to the deformation response of these nanocomposites, and it was found that the piezoresistance repeatability was enhanced under multiple compressive tests. The contents of the composites were optimized to provide either a larger stress-sensitive range, or improved piezoresistance repeatability. The electromechanical response of the grafted nanocomposite matrices was measured under the application of a mechanical load. It was found that the nanocomposites exhibited distinct relative resistance versus stress behavior in the elastic deformation regime; these results were in good agreement with accepted theories about charge carrier transport mechanisms in isolator/conductor composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sensor Actuat A Phys 110:142–149

    Article  CAS  Google Scholar 

  2. Zhu S, Zheng Q, Zhou JF, Song YH, Zhang MQ (2006) Relationship between uniaxial deformation and piezoresistance for HDPE/CB composites. Acta Polym Sin 1:82–86

    Article  Google Scholar 

  3. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945

    Article  CAS  Google Scholar 

  4. Zhang W, Dehghani-Sanij A, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42:3408–3418

    Article  CAS  Google Scholar 

  5. Saeed K, Park S (2007) Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci 106:3729–3735

    Article  CAS  Google Scholar 

  6. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by Shear Mixing. Macromol Mater Eng 287:395

    Article  CAS  Google Scholar 

  7. Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  8. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci 41:1345–1367

    Article  Google Scholar 

  9. Lorenz H, Fritzsche J, Das A et al (2009) Advanced elastomer nanocomposites based on CNT-hybrid filler systems. Compos Sci Technol 69:2135–2143

    Article  CAS  Google Scholar 

  10. Castillo FY, Socher R, Krause B et al (2011) Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 52:3835–3845

    Article  CAS  Google Scholar 

  11. Xu HX, Wang XB, Zhang YF, Liu SY (2006) Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under Co-60 gamma-ray irradiation. Chem Mater 18:2929–2934

    Article  CAS  Google Scholar 

  12. Fragneaud B, Masenelli-Varlot K, Gonzalez-Montiel A, Terrones M, Cavaillé J-Y (2006) Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chem Phys Lett 419:567–73

    Article  CAS  Google Scholar 

  13. Kim YS, Ha SC, Yang Y, Kim YJ, Cho SM, Yang H, Kim YT (2005) Portable electronic nose system based on the carbon black-polymer composite sensor array. Sensor Actuat B Chem 108:285–291

    Article  CAS  Google Scholar 

  14. Mamunya YP, Zois H, Apekis L, Lebedev EV (2004) Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites. Powder Technol 140:49–55

    Article  CAS  Google Scholar 

  15. Job AE, Oliveira FA, Alves N, Giacometti JA, Mattoso LHC (2003) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Synth Met 135:99–100

    Article  Google Scholar 

  16. Arshak K, Morris D, Arshak A, Korostynska O (2008) Sensitivity of polyvinyl butyral/carbon-black sensors to pressure. Thin Solid Films 516:3298–3304

    Article  CAS  Google Scholar 

  17. Wang LH, Ding TH, Wang P (2009) Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. Ieee Sens J 9:1130–1135

    Article  CAS  Google Scholar 

  18. Shimojo M, Namiki A, Ishikawa M, Makino R, Mabuchi K (2004) A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. Ieee Sens J 4:589–596

    Article  Google Scholar 

  19. Mattmann C, Clemens F, Troster G (2008) Sensor for measuring strain in textile. Sensors 8:3719–3732

    Article  CAS  Google Scholar 

  20. Wang N, Zhang XX, Yu JG, Fang JM (2008) Partially miscible poly(lactic acid)-blend-poly (propylene carbonate) filled with carbon black as conductive polymer composite. Polym Int 57:1027–1035

    Article  CAS  Google Scholar 

  21. Zribi K, Feller JF, Elleuch K, Bourmaud A, Elleuch B (2006) Conductive polymer composites obtained from recycled poly(carbonate) and rubber blends for heating and sensing applications. Polym Adv Technol 17:727–731

    Article  CAS  Google Scholar 

  22. Boeger L, Wichmann MHG, Meyer LO, Schulte K (2008) Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol 68:1886–1894

    Article  CAS  Google Scholar 

  23. Park JM, Kim DS, Kim SJ, Kim PG, Yoon DJ, DeVries KL (2007) Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique. Compos Part B Eng 38:847–861

    Article  Google Scholar 

  24. Thostenson ET, Chou TW (2006) Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv Mater 18:2837–2845

    Article  CAS  Google Scholar 

  25. Pham GT, Park YB, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B Eng 39:209–216

    Article  Google Scholar 

  26. Loh KJ, Lynch JP, Shim BS, Kotov NA (2008) Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J Intell Mater Syst Struct 19:747–764

    Article  CAS  Google Scholar 

  27. Knite M, Tupureina V, Fuith A, ZavickiS J, Teteris V (2007) Polyisoprene-multi-wall carbon nanotube composites for sensing strain. Mater Sci Eng CBio S 27:1125–1128

    Article  CAS  Google Scholar 

  28. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936

    Article  CAS  Google Scholar 

  29. Wang P, Geng S, Ding T (2010) Effects of carboxyl radical on electrical resistance of multi-walled carbon nanotube filled silicone rubber composite under pressure. Compos Sci Technol 70:1571–1573

    Article  CAS  Google Scholar 

  30. Shi SL, Zhang LZ, Li JS (2008) Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res 16:395–399

    Article  Google Scholar 

  31. Arboleda L, Ares A, Abad MJ, Ferreira A, Costa P, Lanceros-Mendez S (2013) Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion. J Polym Res 20:12

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China under grant No.10774022, and Jiansu Provincial Social Development Program under grant No. BE2009665.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Qasim, K. & Hu, S. Enhanced piezoresistance repeatability of carbon nanotube/silicane composites achieved using radiation-induced graft polymerization. J Polym Res 21, 479 (2014). https://doi.org/10.1007/s10965-014-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0479-3

Keywords

Navigation