Skip to main content
Log in

Influence of the catalyst-nanotube spacing on the synthesis of polymer-functionalized multiwalled carbon nanotubes by “grafting from” approach

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polynorbornene-functionalized multiwalled carbon nanotubes (MWCNTs) were prepared by a “grafting from” approach, on varying the catalyst-MWCNT spacing to evaluate the influence of the starting catalyst-MWCNT distance on the polymerization efficiency. In particular, 2nd generation Grubbs catalysts and Hoveyda-Grubbs catalysts, both active in the ring opening metathesis polymerization of olefins, were grafted on MWCNTs at 8 to 12 atom spacing from the nanotube surface, and the activity of initiators was tested in the 2-norbornene polymerization. According to our results, initiator performances depend (i) on the length of the arm connecting the catalyst to the MWCNTs, being initiators with longer arms more efficient, and (ii) on the class of Ru catalysts, being Hoveyda-Grubbs catalysts surprisingly more active at room temperatures than 2nd generation Grubbs catalysts. High fractions (80–95 wt%) of polymer covalently bound to the nanotubes in the MWCNT-grafted polynobornene obtained composites were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Chart 2
Chart 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–8

    Article  CAS  Google Scholar 

  2. Coleman JN, Khan U, Gun’ko YK (2006) Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  3. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624–52

    Article  CAS  Google Scholar 

  4. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–205

    Article  CAS  Google Scholar 

  5. Saligheh O, Forouharshad M, Arasteh R, Eslami-Farasani R, Khajavi R, Yadollah Roudbari B (2013) J Polym Res 20:65–70

    Article  Google Scholar 

  6. Dai H (2002) Surf Sci 500:218–41

    Article  CAS  Google Scholar 

  7. Yang B, Pramoda KP, Xu GQ, Goh SH (2007) Adv Funct Mater 17:2062–9

    Article  CAS  Google Scholar 

  8. Jeong W, Kessler MR (2008) Chem Mater 20:7060–8

    Article  CAS  Google Scholar 

  9. Jeong W, Kessler MR (2009) Carbon 47:2406–12

    Article  CAS  Google Scholar 

  10. Byrne MT, Gun’ko YK (2010) Adv Mater 22:1672–88

    Article  CAS  Google Scholar 

  11. Zheng J, Zhu Z, Qi J, Zhou Z, Li P, Peng M (2011) J Mater Sci 46:648–58

    Article  CAS  Google Scholar 

  12. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–36

    Article  CAS  Google Scholar 

  13. Khan U, Gomes VG, Altarawneh IS (2010) Carbon 48:2925–33

    Article  CAS  Google Scholar 

  14. Park SH, Bandaru PR (2010) Polymer 51:5071–7

    Article  CAS  Google Scholar 

  15. Zhang C, Tjiu WW, Liu T, Lui WY, Phang IY, Zhang W (2011) J Phys Chem B 115:3392–9

    Article  CAS  Google Scholar 

  16. Biewlaski CW, Grubbs RH (2007) Prog Polym Sci 32:1–29

    Article  Google Scholar 

  17. Axel HE, Müller AHE, Matyjaszewski K (2010) Controlled and living polymerizations: from mechanisms to applications. Wiley-VCH, Weinheim

    Google Scholar 

  18. Grubbs RH (2003) Handbook of olefin metathesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  19. Samojłowicz C, Bieniek M, Grela K (2009) Chem Rev 109:3708–42

    Article  Google Scholar 

  20. Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746–87

    Article  CAS  Google Scholar 

  21. Hamad FB, Sun T, Xiao S, Verpoort F (2013) Coord Chem Rev 257:2274–92

    Article  CAS  Google Scholar 

  22. Nguyen ST, Grubbs RH, Ziller JW (1993) J Am Chem Soc 115:9858–9

    Article  CAS  Google Scholar 

  23. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Org Lett 1:953–6

    Article  CAS  Google Scholar 

  24. Garber SB, Kingsbury JS, Gray BL, Hoveyda AH (2000) J Am Chem Soc 122:8168–79

    Article  CAS  Google Scholar 

  25. Gessler S, Randl S, Blechert S (2000) Tetrahedron Lett 41:9973–6

    Article  CAS  Google Scholar 

  26. Adronov A, Liu Y (2004) Macromolecules 37:4755–60

    Article  Google Scholar 

  27. Costabile C, Grisi F, Siniscalchi G, Longo P, Sarno M, Sannino D, Leone C, Ciambelli P (2011) J Nanosci Nanotechnol 11:10053–62

    Article  CAS  Google Scholar 

  28. Bredeau S, Loggioni L, Bertini F, Tritto I, Monteverde F, Alexandre A, Dubois P (2007) Macromol Rapid Commun 28:822–7

    Article  CAS  Google Scholar 

  29. Ciambelli P, Sannino D, Sarno M, Fonseca A, Nagy JB (2005) Carbon 43:631–40

    Article  CAS  Google Scholar 

  30. Ciambelli P, Sannino D, Sarno M, Leone C, Lafont U (2007) Diamond Relat Mater 16:1144–9

    Article  CAS  Google Scholar 

  31. Altavilla C, Sarno M, Ciambelli P (2009) Chem Mater 21:4851–8

    Article  CAS  Google Scholar 

  32. Ritter T, Hejl A, Wenzel AG, Funk TW, Grubbs RH (2006) Organometallics 25:5740–5

    Article  CAS  Google Scholar 

  33. Vieille-Petit L, Clavier H, Linden A, Blumentritt S, Nolan SP, Dorta R (2010) Organometallics 29:775–88

    Article  CAS  Google Scholar 

  34. Vougioukalakis GC, Grubbs RH (2007) Organometallics 26:2469–72

    Article  CAS  Google Scholar 

  35. Vougioukalakis GC, Grubbs RH (2008) Chem Eur J 14:7545–56

    Article  CAS  Google Scholar 

  36. Grisi F, Mariconda A, Costabile C, Bertolasi V, Longo P (2009) Organometallics 28:4988–95

    Article  CAS  Google Scholar 

  37. Costabile C, Mariconda A, Cavallo L, Longo P, Bertolasi V, Ragone F, Grisi F (2011) Chem Eur J 17:8618–29

    Article  CAS  Google Scholar 

  38. Perfetto A, Costabile C, Longo P, Bertolasi V, Grisi F (2013) Chem Eur J 19:10492–6

    Article  CAS  Google Scholar 

  39. Sanford MS, Ulman M, Grubbs RH (2001) J Am Chem Soc 123:749–50

    Article  CAS  Google Scholar 

  40. Sanford MS, Love JA, Grubbs RH (2001) J Am Chem Soc 123:6543–4

    Article  CAS  Google Scholar 

  41. Love JA, Sanford MS, Day MW, Grubbs RH (2003) J Am Chem Soc 125:10103–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministero dell’Università e della Ricerca Scientifica e Tecnologica is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Costabile.

Additional information

This Article is dedicated to Professor Adolfo Zambelli on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costabile, C., Sarno, M., Grisi, F. et al. Influence of the catalyst-nanotube spacing on the synthesis of polymer-functionalized multiwalled carbon nanotubes by “grafting from” approach. J Polym Res 21, 449 (2014). https://doi.org/10.1007/s10965-014-0449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0449-9

Keywords

Navigation