Skip to main content
Log in

The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composite nanofibers of Poly(butylene terephthalate) (PBT)/multiwalled-carbon nanotubes (MWCNTs) were prepared by electrospinning technique in the form of a random fibers web. The effect of MWCNTs on the morphology, crystallinity, and mechanical properties of the electrospun composite nanofibers was investigated by SEM, DSC, and tensile testing, respectively. SEM observations indicated that the presence of MWCNTs resulted in finer nanofibers for lower loading; however, a broader diameter was found for nanofibers with higher amounts of carbon nanotubes.It was also observed that the melt-crystallization temperature (Tc) of PBT nanofibers shifted to a higher temperature (about 8 °C) by the incorporation of MWCNTs which might be due to the nucleating effect of the nanotubes. The mechanical properties (specific strength and modulus) of the PBT nanofibers were significantly enhanced by the incorporation of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyxmori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214

    Article  CAS  Google Scholar 

  2. Ijima S (1991) Helicalmicrotubles of grafitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Tucknott R, Yaliraki SN (2002) Aggregation properties of carbon nanotubes at interfaces. Chem Phys 281:455–463

    Article  CAS  Google Scholar 

  4. Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114–143117

    Article  Google Scholar 

  5. Shin YM, Hohman MM, Brenner MP, RutledgeG C (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78(8):1149–1151

    Article  CAS  Google Scholar 

  6. Ko F, Gogotsi Y, AliA NN, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165

    Article  CAS  Google Scholar 

  7. Dror Y, SalalhaW KRL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embeddedin oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020

    Article  CAS  Google Scholar 

  8. GaoJ YA, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) Large-scalefabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbonnanotube assembly. J Am Chem Soc 126(51):16698–16699

    Article  Google Scholar 

  9. Salalha W, Dror Y, KhalfinR L, Cohen Y, Yarin AL, Zussman E (2004) Single-walled carbonnanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 20(22):9852–9855

    Article  CAS  Google Scholar 

  10. Buchko CJ, Chen LC, Shen Y, MartinD C (1999) Processing and microstructureal characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407

    Article  CAS  Google Scholar 

  11. MacDiarmid AG, Jones J, We NID, Llaguno H, Okuzaki M (2001) Electrostatically generated nanofibers of electronic polymers. Synth Met 119:27–30

    Article  CAS  Google Scholar 

  12. Ma Z, Kotakia M, YongaT HW, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536

    Article  CAS  Google Scholar 

  13. Kosmider K, Scott J (2002) Polymeric nanofibers exhibit an enhanced air filtration performance. Filtr Sep 39:20–22

    Article  CAS  Google Scholar 

  14. Luis J, Valle D, Camps R, Díaz A, Franco L, Rodríguez-Galán A, Puiggalí J (2011) Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res 18:1903–1917

    Article  Google Scholar 

  15. Fang J, Niu HT, Lin T, Wang X (2008) Apllications ofelectrospunnanofibers. Chin Sci Bull 53:2265–2286

    Article  CAS  Google Scholar 

  16. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospunnanofibers. Colloid Surf A Phys-Chem Eng A Sp 187–188:469–481

    Article  Google Scholar 

  17. Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospunnanofibers of carbon nanotube/polycaprolactonenanocomposite. Polymer 47:8019–8025

    Article  CAS  Google Scholar 

  18. Saeed K, Park SY, HaiderS BJB (2009) In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospunnanofibers. Nanoscale Res Lertt 4:39–46

    Article  CAS  Google Scholar 

  19. Zhou WP, Wu YL, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers. Polymer 46:12689–12695

    Article  CAS  Google Scholar 

  20. Kim GM, Michler GH, Poetschke P (2005) Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46:7346–7351

    Article  CAS  Google Scholar 

  21. Saeed KH, Young PS (2010) Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrilenanofibers. J Polym Res 17:535–540

    Article  CAS  Google Scholar 

  22. Hou HQ, Ge JJ, Zeng J, Reneker Li Q, Griener A, Cheng SZD (2005) Electrospunpolyacrylonitrilenanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973

    Article  CAS  Google Scholar 

  23. Chen H, Liu Z, Cebe P (2009) Chain confinement in electrospunnanofibers of PET with carbon nanotubes. Polymer 28:872–880

    Article  Google Scholar 

  24. Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospunmultiwalled nanotube/poly(methylmethacrylate) nanofibers. Adv Mater 19:1228–1233

    Article  CAS  Google Scholar 

  25. SalighehO AR, ForouharshadM FRE (2011) Poly(Butylene Terephthalate)/single wall carbon nanotubes composite nanofibers by electrospinning. J Macromol Sci Part B: Phys 50(6):1031–1041

    Article  Google Scholar 

  26. ForouharshadM SO, ArastehR FRE (2010) Manufacture and characterization of poly (butylenes terephthalate) nanofibers by electrospinning. J Macromol Sci Part B: Phys 49(4):833–842

    Article  Google Scholar 

  27. Ra EJ, An KH, KimK K, Jeong SY, Lee YH (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413(1–3):188–193

    Article  CAS  Google Scholar 

  28. Naebe M, Lin T, TianW DL, Wang X (2007) Effects of MWNT nanofillers on structures and properties of PVA electrospunnanofibres. Nanotechnology 18:225605

    Article  Google Scholar 

  29. Chen H, Liu Z, Cebe P (2009) Chain confinement in electrospunnanofibers of PET with carbon nanotubes. Polymer 50:872–880

    Article  CAS  Google Scholar 

  30. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223

    Article  CAS  Google Scholar 

  31. Kim JS, Reneker DH (1999) Polybenzimidazolenanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854

    Article  CAS  Google Scholar 

  32. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electro Stat 35(2–3):151–160

    Article  CAS  Google Scholar 

  33. Kaganj AB, Rashidi AL, Arasteh R (2009) Crystallisationbehaviour and morphological characteristics of poly(propylene)/multi-walled carbon nanotube nanocomposites. J Exp Nanosci 4(1):21–34

    Article  CAS  Google Scholar 

  34. Illers KH (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate). Coll Polym Sci 258(2):117–124

    Article  CAS  Google Scholar 

  35. Goa J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon R (2005) Continuous spinning of singlewalled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847–3854

    Article  Google Scholar 

  36. McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (207) Morphological, electrical, and mechanical characterization of electrospunnanofiber mats containing multiwalled carbon nanotubes Macromolecules 40:997–1003.

  37. Jeon HJ, Kim JS, Kim TG, Hyun J, Ryeol YW, Ho JY (2008) Preparation of poly(ε-caprolactone)-based-polyurethane nanofibers containing silver nanoparticles. Appl Surf Sci 254:5886–5890

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Saligheh or M. Forouharshad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saligheh, O., Forouharshad, M., Arasteh, R. et al. The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers. J Polym Res 20, 65 (2013). https://doi.org/10.1007/s10965-012-0065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0065-5

Keywords

Navigation