Skip to main content
Log in

Time Varying Isotropic Vector Random Fields on Spheres

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For a vector random field that is isotropic and mean square continuous on a sphere and stationary on a temporal domain, this paper derives a general form of its covariance matrix function and provides a series representation for the random field, which involve the ultraspherical polynomials. The series representation is somehow an imitator of the covariance matrix function, but differs from the spectral representation in terms of the ordinary spherical harmonics, and is useful for modeling and simulation. Some semiparametric models are also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Askey, R., Bingham, N.H.: Gaussian processes on compact symmetric spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 37, 127–143 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berman, S.M.: Isotropic Gaussian processes on the Hilbert sphere. Ann. Prob. 8, 1093–1106 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bingham, N.H.: Positive definite functions on spheres. Proc. Cambridge Phil. Soc. 73, 145–156 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cartan, É.: Sur la détermination d’un systém orthogonal complet dans un espace de Riemann symétrique clos. Circolo matematico di Palermo. Rendiconti 53, 217–252 (1929)

    Article  MATH  Google Scholar 

  6. Cheng, D., Xiao, Y.: Excursion probability of Gaussian random fields on sphere. Bernoulli 22, 1113–1130 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, S., Lifshits, M.A.: Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres. ESAIM 16, 165–221 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. D’Ovidio, M.: Coordinates changed random fields on the sphere. J. Stat. Phys. 154, 1153–1176 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Du, J., Ma, C., Li, Y.: Isotropic variogram matrix functions on spheres. Math. Geosci. 45, 341–357 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré B 3, 121–226 (1967)

    MATH  MathSciNet  Google Scholar 

  11. Gaspari, G., Cohn, S.E.: Construction of correlations in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757 (1999)

    Article  Google Scholar 

  12. Gaspari, G., Cohn, S.E., Guo, J., Pawson, S.: Construction and application of covariance functions with variable length-fields. Q. J. R. Meteorol. Soc. 132, 815–1838 (2006)

    Article  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 7th edn. Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  14. Hannan, E.J.: Multiple Time Series. Wiley, New York (1970)

    Book  MATH  Google Scholar 

  15. Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011)

    Book  MATH  Google Scholar 

  16. Jones, R.H.: Stochastic processes on a sphere. Ann. Math. Statist. 34, 213–218 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lamberg, L., Muinonen, K., Ylönen, J., Lumme, K.: Spectral estimation of Gaussian random circles and spheres. J. Comput. Appl. Math. 136, 109–121 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Prob. 25, 3047–3094 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leonenko, N., Sakhno, L.: On spectral representation of tensor random fields on the sphere. Stoch. Anal. Appl. 31, 167–182 (2012)

    MATH  MathSciNet  Google Scholar 

  20. Leonenko, N., Shieh, N.: Rényi function for multifractal random fields. Fractals 21, 1350009 (2013). (13 pp)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma, C.: Vector random fields with second-order moments or second-order increments. Stoch. Anal. Appl. 29, 197–215 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ma, C.: Stationary and isotropic vector random fields on spheres. Math. Geosci. 44, 765–778 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ma, C.: Isotropic covariance matrix functions on all spheres. Math. Geosci. 47, 699–717 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ma, C.: Stochastic representations of isotropic vector random fields on spheres. Stoch. Anal. Appl. 34, 389–403 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ma, C.: Isotropic covariance matrix polynomials on spheres. Stoch. Anal. Appl. (2016, to appear)

  26. Malyarenko, A.: Invariant Random Fields on Spaces with a Group Action. Springer, New York (2013)

    Book  MATH  Google Scholar 

  27. Malyarenko, A., Olenko, A.: Multidimensional covariant random fields on commutative locally compact groups. Ukrainian Math. J. 44, 1384–1389 (1992)

    Article  MathSciNet  Google Scholar 

  28. McLeod, M.G.: Stochastic processes on a sphere. Phy. Earth Plan. Interior 43, 283–299 (1986)

    Article  Google Scholar 

  29. Mangulis, V.: Handbook of Series for Scientists and Engineers. Academic Press Inc, New York (1965)

    MATH  Google Scholar 

  30. Mokljacuk, M.P., Jadrenko, M.I.: Linear statistical problems for stationary isotropic random fields on a sphere, I. Theor. Prob. Math. Statist. 18, 115–124 (1979)

    Google Scholar 

  31. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York (1998)

    Book  MATH  Google Scholar 

  32. Roy, R.: Spetral analysis for random process on the circle. J. Appl. Prob. 9, 745–757 (1972)

    Article  MATH  Google Scholar 

  33. Roy, R.: Spectral analysis for a random process on the sphere. Ann. Inst. Statist. Math. 28, 91–97 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schoenberg, I.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  35. Szegö, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc. Colloq. Publ., vol. 23. Amer. Math. Soc., Providence (1975)

  36. Wang, H.-C.: Two-point homogenous spaces. Ann. Math. 55, 177–191 (1959)

    Article  Google Scholar 

  37. Yadrenko, A.M.: Spectral Theory of Random Fields. Optimization Software, New York (1983)

    MATH  Google Scholar 

  38. Yaglom, A.M.: Second-order homogeneous random fields. Proc. 4th Berkeley Symp. Math. Stat. Prob 2, 593–622 (1961)

    MATH  MathSciNet  Google Scholar 

  39. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, vol. I. Springer, New York (1987)

    MATH  Google Scholar 

Download references

Acknowledgments

A reviewer’s valuable comments and helpful suggestions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C. Time Varying Isotropic Vector Random Fields on Spheres. J Theor Probab 30, 1763–1785 (2017). https://doi.org/10.1007/s10959-016-0689-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0689-1

Keywords

Mathematics Subject Classification (2010)

Navigation