Skip to main content
Log in

Dimension-Free Harnack Inequalities on \(\hbox {RCD}(K, \infty )\) Spaces

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The dimension-free Harnack inequality for the heat semigroup is established on the \(\mathrm{{RCD}}(K,\infty )\) space, which is a non-smooth metric measure space having the Ricci curvature bounded from below in the sense of Lott–Sturm–Villani plus the Cheeger energy being quadratic. As its applications, the heat semigroup entropy-cost inequality and contractivity properties of the semigroup are studied, and a strong-enough Gaussian concentration implying the log-Sobolev inequality is also shown as a generalization of the one on the smooth Riemannian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, S.: Uniform positivity improving property, Sobolev inequalities and spectral gap. J. Funct. Anal. 158(1), 152–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)-finite measure. Trans. Amer. Math. Soc. 367, 4661–4701 (2015)

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2008)

  4. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below. Invent. Math. 195, 289–391 (2014)

  5. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from belowl. Duke Math. J. 163(7), 1405–1490 (2011)

  6. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Prob. 43(1), 339–404 (2015)

  7. Bakry, D.: On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. In: Huaizhong, Z., Aubrey, T (eds.) New Trends in Stochastic Analysis. World Scientific, pp. 43–75 (1997)

  8. Bakry, D., Baudoin, F., Bonnefont, M., Chafai, D.: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255(8), 1905–1938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakry, D., Emery, M.: Diffusions hypercontractives. In: Sémin. de probabilités XIX, 1983/84. Lecture Notes in Math. 1123, Springer, Berlin (1985)

  10. Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262, 2646–2676 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. Journal of the EMS (to appear). arXiv:1101.3590v4 (2011)

  12. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Spaces, vol. 14 of De Gruyter studies in Mathematics, De Gruyter (1991)

  13. Cheeger, J., Colding, T.: On the structure of spaces with Ricci curvature bounded below. I. J. Diff. Geom. 46, 406–480 (1997)

  14. Cheeger, J., Colding, T.: On the structure of spaces with Ricci curvature bounded below. II. J. Diff. Geom. 54, 13–35 (2000)

  15. Cheeger, J., Colding, T.: On the structure of spaces with Ricci curvature bounded below. III. J. Diff. Geom. 54, 37–74 (2000)

  16. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  17. Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eldredge, N.: Gradient estimates for the subelliptic heat kernel on \(H\)-type groups. J. Funct. Anal. 258, 504–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. arXiv:1303.4382 (2013)

  20. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, vol. 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended ed. (2011)

  21. Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in \(\text{ RCD }^{*}(K,N)\) metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

  22. Gigli, N., Kuwada, K., Ohta, S.-I.: Heat flow on Alexandrov spaces. Commun. Pure Appl. Math. 66, 307–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. Lecture Notes in Maths, vol. 1563, pp. 54–82 (1993)

  24. Jiang, R., Li, H., Zhang, H.: Heat Kernel Bounds on Metric Measure Spaces and Some Applications. arXiv:1407.5289

  25. Koskela, P., Zhou, Y.: Geometry and analysis of Dirichlet forms. Adv. Math. 231, 2755–2801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, H.-Q.: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal. 236(2), 369–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, H.: Dimension dependent log-Harnack inequality on the \(\text{ RCD }^*(K,N)\) space and its consequences. Submitted

  28. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, New York (1992)

    Book  MATH  Google Scholar 

  30. Röckner, M., Wang, F.-Y.: Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds. Forum Math. 15, 893–921 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \(\text{ RCD }(K,\infty )\) metric measure spaces. Disc. Cont. Dyn. Sist. A 34, 1641–1661 (2014)

  32. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Villani, C.: Optimal Transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin (2009)

  35. Wang, F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 109, 417–424 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, F.-Y.: Logarithmic Sobolev inequalities: conditions and counterexamples. J. Oper. Theory 46, 183–197 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Wang, F.-Y.: Harnack inequalities on manifolds with boundary and applications. J. Math. Pures Appl. 94, 304–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, F.-Y.: Functional Inequalities, Markov Semigroups and Spectral Theory. Science Press, Beijing (2005)

    Google Scholar 

  39. Wang, F.-Y.: Equivalent semigroup properties for the curvature-dimension condition. Bull. Sci. Math. 135, 803–815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, F.-Y.: Generalized curvature condition for subelliptic diffusion processes. arXiv:1202.0778v2 (2012)

  41. Wang, F.-Y.: Analysis for Diffusion Processes on Riemannian Manifolds. World Scientific, Singapore (2013)

    Book  Google Scholar 

  42. Wang, F.-Y.: Criteria of spectral gap for Markov operators. J. Funct. Anal. 266, 2137–2152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, H.-C., Zhu, X.-P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Commun. Anal. Geom. 18, 503–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Dejun Luo for his careful reading of the first version of this work in which the reference measure is assumed to be a probability measure. And thanks are also given to an anonymous referee for his or her careful reading and meticulous comments, which make the presentation of this paper better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqian Li.

Additional information

Partially supported by the National Natural Science Foundation of China (NSFC) No. 11401403 and the Australian Research Council (ARC) Grant DP130101302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H. Dimension-Free Harnack Inequalities on \(\hbox {RCD}(K, \infty )\) Spaces. J Theor Probab 29, 1280–1297 (2016). https://doi.org/10.1007/s10959-015-0621-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0621-0

Keywords

Mathematical Subject Classification (2010)

Navigation