Skip to main content
Log in

TOPOLOGICAL DEGREE METHOD FOR A \(\psi\)-HILFER FRACTIONAL DIFFERENTIAL EQUATION INVOLVING TWO DIFFERENT FRACTIONAL ORDERS

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the existence and uniqueness of solution for a new class of \(\psi\)-Hilfer-type fractional differential equation with two fractional derivatives of different order. By making use of topological degree theory for condensing maps we established the existence result, for the reason that the previously mentioned theory softens the criteria of strong compactness by weakening it. To deal with the uniqueness result we use Banach’s contraction principle. As application, we give an example to demonstrate our theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used to support the finding of this study are available from the corresponding author upon request.

References

  1. A. Ali, B. Samet, K. Shah and R. A. Khan, Existence and stability of solution to a coppled systems of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), Paper No. 16, 13 pp.

  2. A. Almalahi, K. Panchal, Existence results of ψ-Hilfer integro-differential equations with fractional order in Banach space, Ann. Univ. Paedagog. Crac. Stud. Math, 19 (2020), 171–192.

    MathSciNet  Google Scholar 

  3. J. Alzabut, B. Mohammadaliee, M. E. Samei, Solutions of two fractional q-integro-differential equations under sum and integral boundary value conditions on a time scale, Adv. Differ. Equ., vol. 2020, pp. 1–33, 2020.

    Article  MathSciNet  Google Scholar 

  4. S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55 (2018), 1639–1657.

    MathSciNet  Google Scholar 

  5. M. Bahadur Zada, K. Shah and R. A. Khan, Existence theory to a coupled system of higher order fractional hybrid differential equations by topological degree theory, Int. J. Appl. Comput. Math., 4 (2018), Art. 102, 19 pp.

  6. Z. Baitiche, C. Derbazi, M. Benchohra, (2020). ψ–Caputo fractional differential equations with multi-point boundary conditions by Topological Degree Theory. Results in Nonlinear Analysis, 3(4), 167–178.

  7. K. Deimling, Nonlinear Functional Analysis, New York, Springer-Verlag, (1985).

    Book  Google Scholar 

  8. K. Diethelm, The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010.

  9. T. A. Faree, S. K. Panchal, (2022). Existence and Uniqueness of the Solution to a Class of Fractional Boundary Value Problems Using Topological Methods.

  10. K. Hilal, A. Kajouni, H. Lmou, (2022). Boundary Value Problem for the Langevin Equation and Inclusion with the Hilfer Fractional Derivative. International Journal of Differential Equations, 2022.

  11. R. Hilfer, Applications of Fractional Calculs in Physics, World Scientific, Singapore, 2000.

    Book  Google Scholar 

  12. F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comenian. (N.S.) 75 (2006), 233240.

  13. A. Khan, M. I. Syam, A. Zada, H. Khan, (2018). Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives. The European Physical Journal Plus, 133(7), 1–9.

    Article  Google Scholar 

  14. R.A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal. 19 (2015), 515526.

    Google Scholar 

  15. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, (2006).

    Google Scholar 

  16. V. Lakshmikantham, S. Leela, J.V. Devi, Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Newcastle upon Tyne, UK, (2009).

    Google Scholar 

  17. H. Lmou, K. Hilal, A. Kajouni, A New Result for ψ-Hilfer Fractional Pantograph-Type Langevin Equation and Inclusions. Journal of Mathematics, 2022.

  18. A. EL Mfadel, S. Melliani, M. Elomari, (2022). Existence results for nonlocal Cauchy problem of nonlinear ψ-Caputo type fractional differential equations via topological degree methods. Advances in the Theory of Nonlinear Analysis and its Application, 6(2), 270–279.

    Article  Google Scholar 

  19. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993.

  20. J.V.D.C. Sousa, E.C. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl. 11 (2019), 87–106.

    MathSciNet  Google Scholar 

  21. J.V.D.C. Sousa, E.C Capelas de Oliveira, On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018).

  22. K. Shah, A. Ali, R. A. Khan,: Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems. Boundary Value Problems, 2016(1), 1–12 (2016).

  23. A. Ali, M. Sarwar, M. B. Zada, K. Shah, : Degree theory and existence of positive solutions to coupled system involving proportional delay with fractional integral boundary conditions. Mathematical Methods in the Applied Sciences, (2020).

  24. K. Shah, A. Ali, S. Bushnaq, :HyersUlam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Mathematical methods in the applied sciences, 41(17), 8329–8343 (2018).

  25. K. Shah, N. Mlaiki, T. Abdeljawad, A. Ali, :Using the measure of noncompactness to study a nonlinear impulsive cauchy problem with two different kinds of delay. Fractals, 30(08), 2240218 (2022).

    Article  Google Scholar 

  26. R. A. Khan, K. Shah, :Existence and uniqueness of solutions to fractional order multi-point boundary value problems. Commun. Appl. Anal, 19(3-4), 515–525 (2015).

    Google Scholar 

  27. M. Sher, K. Shah, J. Rassias, :On qualitative theory of fractional order delay evolution equation via the prior estimate method. Mathematical Methods in the Applied Sciences, 43(10), 6464–6475 (2020).

    Article  MathSciNet  Google Scholar 

  28. K. Hilal, A. Kajouni, H. Lmou, : Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions, filomat. 37, 1241–1259 (2023).

  29. H. Lmou, K. Hilal, A. Kajouni, : On a class of fractional Langevin inclusion with multi-point boundary conditions, Bol. Soc. Parana. Mat. 41(2023), 1–13 (2023).

    MathSciNet  Google Scholar 

  30. H. Lmou, K. Hilal, A. Kajouni, : Existence and uniqueness results for Hilfer Langevin fractional pantograph differential equations and inclusions, International Journal of Difference Equations, 18(1), 145–162 (2023) .

    Google Scholar 

  31. K. Muthuselvan, B. Sundaravadivoo, S. Alsaeed, K. S. Nisar, : New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 8(7), 17154–17170 (2023).

    Article  MathSciNet  Google Scholar 

  32. K. S. Nisar, : Efficient results on Hilfer pantograph model with nonlocal integral condition. Alexandria Engineering Journal, 80, 342–347 (2023).

    Article  Google Scholar 

  33. K. Kavitha, V. Vijayakumar, K. S. Nisar, :On the approximate controllability of non-densely defined Sobolev-type nonlocal Hilfer fractional neutral Volterra-Fredholm delay integro-differential system. Alexandria Engineering Journal, 69, 57–65 (2023).

    Article  Google Scholar 

  34. K. Jothimani, N. Valliammal, S. Alsaeed, K. S. Nisar, C. Ravichandran, : Controllability Results of Hilfer Fractional Derivative Through Integral Contractors. Qualitative Theory of Dynamical Systems, 22(4), 137 (2023).

    Article  MathSciNet  Google Scholar 

  35. K. S. Nisar, K. Jothimani, C. Ravichandran, D. Baleanu, D. Kumar,: New approach on controllability of Hilfer fractional derivatives with nondense domain. AIMS Mathematics, 7(6), 10079–10095 (2022).

  36. A. Khan, Q. T. Ain, T. Abdeljawad, K. S. Nisar, :Exact Controllability of Hilfer Fractional Differential System with Non-instantaneous Impluleses and State Dependent Delay. Qualitative Theory of Dynamical Systems, 22(2), 62 (2023).

    Article  MathSciNet  Google Scholar 

  37. C. Ravichandran, K. Jothimani, K. S. Nisar, E. E. Mahmoud, I. S. Yahia, : An interpretation on controllability of Hilfer fractional derivative with nondense domain. Alexandria Engineering Journal, 61(12), 9941–9948 (2022).

    Article  Google Scholar 

  38. K., Muthuselvan, B., Sundaravadivoo, K. S., Nisar, S., Alsaeed.: Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 8(7), 16846–16863 (2023).

Download references

Acknowledgements

The authors would like to thank the referees for the valuable comments and suggestions that improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Lmou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lmou, H., Hilal, K. & Kajouni, A. TOPOLOGICAL DEGREE METHOD FOR A \(\psi\)-HILFER FRACTIONAL DIFFERENTIAL EQUATION INVOLVING TWO DIFFERENT FRACTIONAL ORDERS. J Math Sci 280, 212–223 (2024). https://doi.org/10.1007/s10958-023-06809-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06809-z

Keywords

Mathematics Subject Classification (2010)

Navigation