Skip to main content
Log in

On Symmetric Killing Tensors and Codazzi Tensors of Ranks p ≥ 2

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is devoted to the geometry of symmetric Killing tensors and Codazzi tensors of ranks p ≥ 2 and includes, in addition to the new results obtained in this paper, a survey on this topic from earlier works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Aleksandrova, S. E. Stepanov, and I. I. Tsyganok, “A remark on a Laplacian operator which acts on symmetric tensors,” e-print ArXiV 1411.1928 [math.DG].

  2. C. Barbance, “Sur les tenseurs symetriques,” C. R. Acad. Sci. Paris. Ser. A, 276, 387–389 (1973).

    MathSciNet  MATH  Google Scholar 

  3. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin–Heidelberg–New York (1987).

  4. R. G. Bettiol and R. A. E. Mendes, “Sectional curvature and Weitzenböck formulae,” e-print ArXiV 1708.09033v1 [math.DG].

  5. M. Boucetta, “Spectre des Laplacien de Lichnerowicz sur les sphères et les projectifs réels,” Publ. Mat., 43, No. 2, 451–483 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. P. Bourguignon, “Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein,” Invent. Math., 63, 263–286 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourguignon J. P., “Formules de Weitzenbök en dimension 4,” in: Géométrie riemannienne en dimension 4. Semin. Arthur Besse, Paris 1978/79, Cedic / Fernand Nathan, Paris (1981), pp. 308–333.

  8. D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, “On the Kato inequality in Riemannian geometry,” in: Global Analysis and Harmonic Analysis, Soc. Math. Fr., Paris (2000), pp. 95–113.

  9. G. Catino, C. Mantegazza, and L. Mazzieri, “A note on Codazzi tensors,” Math. Ann., 362, No. 1–2, 629–638 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, New Jersey (2017).

    Book  MATH  Google Scholar 

  11. B. Coll, J. J. Ferrando, and J. A. Saez, “On the geometry of Killing and conformal tensors,” J. Math. Phys., 47, 062503 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. S. Dairbekov and V. A. Sharafutdinov, “Conformal Killing symmetric tensor fields on Riemannian manifolds,” Mat. Tr., 13, No. 1, 85–145 (2010).

    MathSciNet  MATH  Google Scholar 

  13. A. Derdzinski and C. L. Shen, “Codazzi tensor fields, curvature and Pontryagin forms,” Proc. London Math. Soc., 47, No. 3, 15-26 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton (1949).

    MATH  Google Scholar 

  15. A. Gebarowski, “On nearly conformally symmetric warped product space-times,” in: Proc. Int. Conf. “Differential Geometry and Its Applications”, Bucharest (1992), pp. 61–75.

  16. R. E. Green and H. Wu, “Integrals of subharmonic functions on manifolds of nonnegative curvature,” Invent. Mat., 27, 265–298 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Heil, A. Moroianu, and U. Semmelmann, “Killing tensors on tori,” J. Geom. Phys., 117, 1–6 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Heil, A. Moroianu, and U. Semmelmann, “Killing and conformal Killing tensors,” J. Geom. Phys., 106, 383–400 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. L. Johnson and L. B. Whitt, “Totally geodesic foliations on 3-manifolds,” Proc. Am. Math. Soc., 76, No. 2, 355–357 (1979).

    MathSciNet  MATH  Google Scholar 

  20. G. H. Katzin and J. Levine, “Note on the number of linearly independentmth order first integrals,” Tensor, 19, No. 1, 42–44 (1968).

    MathSciNet  MATH  Google Scholar 

  21. Sh. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin–Heidelberg–New York (1972).

  22. Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. 2, Interscience, New York–London–Sydney (1969).

  23. D. Kramer, H. Stephani, M. Maccallum, E. Herl, Exact Solutions of the Einstein Field Solutions, Deutscher Verlag der Wissenschaften, Berlin (1980).

    Google Scholar 

  24. D. Kubiznak and V. P. Frolov, “The hidden symmetry of higher dimensional Kerr-NUT-AdS spacetimes,” Class. Quant. Grav., 24, No. 3, F1–F6 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. F. Laptev and N. M. Ostianu, “Distribution of m-dimensional linear elements in spaces of projective connection, I,” Tr. Geom. Semin. VINITI, 5, 49–94 (1971).

    MATH  Google Scholar 

  26. J. Leder, A. Schwenk-Schellschmidt, U. Simon, and M. Wiehe, “Generating higher order Codazzi tensors by functions,” in: Geometry and Topology of Submanifolds. Vol. IX, World Scientific, London–Singapore (1999), pp. 174–191.

  27. P. Li and R. Schoen, “Lp and mean value properties of subharmonic function on Riemannian manifolds,” Acta Math., 153, No. 1, 279–301 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Lichnerowicz, “Propagateurs et commutateurs en relativite generate,” Publ. Math. IHES, 10, No. 1, 5–56 (1961).

    Article  MATH  Google Scholar 

  29. H. L. Liu, “Codazzi tensor and the topology of surfaces,” Ann. Glob. Anal. Geom., 16, 189–202 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. L. Liu, U. Simon, and C. P. Wang, “Higher order Codazzi tensors on conformally flat spaces,” Beitr. Algebra Geom., 39, No. 2, 329–348 (1998).

    MathSciNet  MATH  Google Scholar 

  31. C. A. Mantica, L. C. Molinari, Y. J. Suh, and S. Shenawy, “Perfect-fluid, generalized Robertson–Walker space-times, and Gray’s decomposition,” J. Math. Phys., 60, No. 5, 052506 (2019).

  32. O. V. Manturov, Elements of Tensor Calculus [in Russian], Prosveshchenie, Moscow (1991).

    MATH  Google Scholar 

  33. G. Merton, “Codazzi tensors with two eigenvalue functions,” Proc. Am. Math. Soc., 141, No. 9, 3265–3273 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Mikeš et. al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc (2015).

    MATH  Google Scholar 

  35. A. G. Nikitin, “Generalized Killing tensors of arbitrary order,” Ukr. Mat. Zh., 43, No. 6, 786–795 (1991).

    Article  MathSciNet  Google Scholar 

  36. A. P. Norden, Spaces of Affine Connection [in Russian], Nauka, Moscow (1976).

    MATH  Google Scholar 

  37. P. Petersen, Riemannian Geometry, Springer-Verlag, Berlin (2016).

    Book  MATH  Google Scholar 

  38. S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Birkhäuser, Basel (2008).

  39. R. Ponge and H. Reckziegel, “Twisted products in pseudo-Riemannian geometry,” Geom. Dedic., 48, 15–25 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Rani, S. B. Edgar, and A. Barnes, “Killing tensors and conformal Killing tensors from conformal Killing vectors,” Class. Quant. Grav., 20, No. 11, 1929–1942 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  41. B. L. Reinhart, Differential Geometry of Foliations, Springer-Verlag, Berlin–New York (1983).

    Book  MATH  Google Scholar 

  42. W. Roter, “On a generalization of conformally symmetric metric,” Tensor, 46, 278–286 (1987).

    MATH  Google Scholar 

  43. J. H. Sampson, “On a theorem of Chern,” Trans. Am. Math. Soc., 177, 141–153 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  44. I. G. Shandra, S. E. Stepanov, and J. Mikeˇs, “On higher-order Codazzi tensors on complete Riemannian manifolds,” Ann. Glob. Anal. Geom., 56, No. 3, 429–442 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  45. V. A. Sharafutdinov, “Killing tensor fields on the 2-torus,” Sib. Mat. Zh., 57, No. 1, 199–221 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu. I. Shinkunas, “On distributions of m-dimensional planes in an n-dimensional Riemannian space,” Tr. Geom. Semin. VINITI, 5, 123–133 (1973).

    Google Scholar 

  47. P. A. Shirokov and A. P. Shirokov, Affine Differential Geometry [in Russian], Fizmatlit, Moscow (1959).

    MATH  Google Scholar 

  48. N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  49. E. Stein and G. Weiss, “Generalization of the Cauchy–Riemann equations and representations of the rotation group,” Am. J. Math., 90, 163-196 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  50. S. E. Stepanov, “On one class of Riemannian near product structurs,” Izv. Vyssh. Ucheb. Zaved. Mat., 7, 40–46 (1989).

    Google Scholar 

  51. S. E. Stepanov, “Geometric obstruction of the existence of a totally umbilical distribution on a compact manifold,” in: Webs and Quasigroups [in Russian], Kalinin (1990), pp. 135–137.

  52. S. E. Stepanov, “Fields of symmetric tensors on a compact Riemannian manifold,” Mat. Zametki, 52, No. 4, 85-88 (1992).

    Google Scholar 

  53. S. E. Stepanov, “Integral formula for a compact manifold with a Riemannian near product structure,” Izv. Vyssh. Ucheb. Zaved. Mat., 7, 69-73 (1994).

    Google Scholar 

  54. S. E. Stepanov, “On an application of one theorem of P. A. Shirokov in Bochner’s technique,” Izv. Vyssh. Ucheb. Zaved. Mat., 9, 53-59 (1996).

    Google Scholar 

  55. S. E. Stepanov, “On conformal Killing 2-form of the electromagnetic field,” J. Geom. Phys., 33, No. 3, 191–209 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  56. S. E. Stepanov and J. Mikeš, “Seven invariant classes of the Einstein equations and projective mappings,” AIP Conf. Proc., 1460, No. 1, 221–225 (2012).

    Article  Google Scholar 

  57. S. E. Stepanov and J. Mikeš, “The spectral theory of the Yano rough Laplacian with some of its applications,” Ann. Glob. Anal. Geom., 48, 37–46 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  58. S. E. Stepanov, J. Mikeš, and M. Jukl, “The pre-Maxwell equations,” in: Geometric Methods in Physics, Springer-Verlag, Berlin (2013), pp. 377–381.

  59. S. E. Stepanov and V. V. Rodionov, “Addendum to one work of J.-P. Bourguignon,” Differ. Geom. Mnogoobr. Figur., No. 28, 68–72 (1997).

  60. S. E. Stepanov and M. B. Smolnikova, “First-order fundamental differential operators on exterior and interior forms,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 11, 55–60 (2002).

  61. S. E. Stepanov and M. B. Smolnikova, “Affine differential geometry of Killing tensors,” Izv. Vyssh. Ucheb. Zaved. Mat., 11, 82-86 (2004).

    MathSciNet  MATH  Google Scholar 

  62. S. E. Stepanov and I. I. Tsyganok, “A remark on the mixed scalar curvature of a manifold with two orthogonal totally umbilical distributions,” Adv. Geom., 19, No. 3, 291–296 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  63. S. E. Stepanov, I. I. Tsyganok, and M. B. Khripunova, “The Killing tensors on an n-dimensional manifold with SL(n,R)-structure,” Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 55, No. 1, 121-131 (2016).

    MathSciNet  MATH  Google Scholar 

  64. S. E. Stepanov, I. I. Tsyganok, and J. Mikeš, “On the Sampson Laplacian,” Filomat, 33, No. 4, 342–358 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  65. H. Stephani, “A note on Killing tensors,” Gen. Rel. Grav., 9, No. 9, 789–792 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Sumitomo and K. Tandai, “Killing tensor fields of degree 2 and spectrum of SO(n+1)/(SO(n−1) × SO(2)),” Osaka J. Math., 17, 649–675 (1980).

    MathSciNet  MATH  Google Scholar 

  67. J. Tafel, “All transverse and TT tensors in flat spaces of any dimension,” Gen. Rel. Grav., 50, No. 3, 31 (2018).

  68. M. Takeuchi, “Killing tensor fields on spaces of constant curvature,” Tsukuba J. Math., 7, No. 2, 233–256 (1963).

    MathSciNet  MATH  Google Scholar 

  69. M. Visinescu, “Higher-order symmetries in a gauge covariant approach and quantum anomalies,” in: Proc. 6th Summer School “Modern Mathematical Physics” (Belgrade, Serbia, September 14–23, 2010), Inst. Phys., Belgrade (2011), pp. 321–332.

  70. H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey (1997).

    MATH  Google Scholar 

  71. G. J. Weir, “Conformal Killing tensors in reducible spaces,” J. Math. Phys., 18 (1977), pp. 1782–1787.

    Article  MATH  Google Scholar 

  72. H. Wu, “A remark on the Bochner technique in differential geometry,” Proc. Am. Math. Soc., 78, No. 3 (1980), pp. 403–407.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Stepanov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 179, Proceedings of the International Conference “Classical and Modern Geometry” Dedicated to the 100th Anniversary of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.E., Aleksandrova, I.A. & Tsyganok, I.I. On Symmetric Killing Tensors and Codazzi Tensors of Ranks p ≥ 2. J Math Sci 276, 443–469 (2023). https://doi.org/10.1007/s10958-023-06763-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06763-w

Keywords and phrases

AMS Subject Classification

Navigation