Skip to main content
Log in

Codazzi and Killing Tensors on a Complete Riemannian Manifold

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The global geometry of the traceless Killing and Codazzi tensors on complete (in particular, compact) Riemannian manifolds is studied by methods of geometric analysis. Applications are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Branson, “Spectra of self-gradients on spheres,” J. Lie Theory 9 (2), 491–506 (1999).

    MathSciNet  MATH  Google Scholar 

  2. E. Stein and G. Weiss, “Generalization of the Cauchy–Riemann equations and representations of the rotation group,” Amer. J. Math 90, 163–196 (1968).

    Article  MathSciNet  Google Scholar 

  3. M. V. Smolnikova and S. E. Stepanov, “Fundamental first-order differential operators on exterior and symmetric forms,” Russian Math. (Iz. VUZ) 46 (11), 51–56 (2002).

    MathSciNet  Google Scholar 

  4. S. E. Stepanov and M. V. Smolnikova, “Affine differential geometry of Killing tensors,” Russian Math. (Iz. VUZ) 48 (11), 74–78 (2004).

    MathSciNet  MATH  Google Scholar 

  5. K. Heil, A. Moroianu and U. Semmelmann, “Killing and conformal Killing tensors,” J. Geom. Phys. 106, 383–400 (2016).

    Article  MathSciNet  Google Scholar 

  6. D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge Univ. Press, Cambridge, 1980).

    MATH  Google Scholar 

  7. M. Eastwood, “Higher symmetries of the Laplacian,” Ann. of Math. (2) 161 (3), 1645–1665 (2005).

    Article  MathSciNet  Google Scholar 

  8. K. Hell, Killing and conformal Killing tensors, Ph. D. Thesis (Institut für Geometrie und Topologie der Universität Stuttgart, 2017).

    Google Scholar 

  9. T. Sumitomo and K. Tandai, “Killing tensor fields on the standard sphere and spectra of \(SO(n+1)/ (SO(n-1)\times SO(2)\) and \(O(n+1)/O(n-1)\times O(2)\),” Osaka Math. J. 20 (1), 51–78 (1983).

    MathSciNet  MATH  Google Scholar 

  10. S. E. Stepanov, “Fields of symmetric tensors on a compact Riemannian manifold,” Math. Notes 52 (4), 1048–1050 (1992).

    Article  MathSciNet  Google Scholar 

  11. N. S. Dairbekov and V. A. Sharafutdinov, “On conformal Killing symmetric tensor fields on Riemannian manifolds,” Siberian Adv. Math. 21 (1), 1–41 (2011).

    Article  MathSciNet  Google Scholar 

  12. V. A. Sharafutdinov, “Killing tensor fields on the \(2\)-torus,” Siberian Math. J. 57 (1), 155–173 (2016).

    Article  MathSciNet  Google Scholar 

  13. K. Heil, A. Moroianu, and U. Semmelmann, “Killing tensors on tori,” J. Geom. Phys. 117, 1–6 (2017).

    Article  MathSciNet  Google Scholar 

  14. K. Heil and T. Jentsch, “A special class of symmetric Killing \(2\)-tensors,” J. Geom. Phys. 138, 103–124 (2019).

    Article  MathSciNet  Google Scholar 

  15. S. E. Stepanov and V. V. Rodionov, “Addition to one J.-P. Bourguignon’s work,” Differentsial’naya Geometriya Mnogoobrazii Figur 28, 69–73 (1997).

    Google Scholar 

  16. H. L. Liu, “Codazzi tensor and the topology of surfaces,” Ann. Global Anal. Geom. 16 (2), 189–202 (1998).

    Article  MathSciNet  Google Scholar 

  17. H. L. Liu, U. Simon, and C. P. Wang, “Higher order Codazzi tensors on conformally flat spaces,” Beiträge Algebra Geom. 39 (2), 329–348 (1998).

    MathSciNet  MATH  Google Scholar 

  18. J. Leder, A. Schwenk-Schellschmidt, U. Simon, and M. Wiehe, “Generating higher order Codazzi tensors by functions,” in Geometry and Topology of Submanifolds, IX (World Sci. Publ., River Edge, NJ, 1999), pp. 174–191.

    Article  MathSciNet  Google Scholar 

  19. S. E. Stepanov, J. Mikeš, and I. G. Shandra, “On higher-order Codazzi tensors on complete Riemannian manifolds,” Ann. Global Anal. Geom. 56 (3), 429–442 (2019).

    Article  MathSciNet  Google Scholar 

  20. P. Petersen, Riemannian Geometry (Springer, New York, 2016).

    Book  Google Scholar 

  21. H. Wu, The Bochner Technique in Differential Geometry (Higher Education Press, Beijing, 2017).

    MATH  Google Scholar 

  22. A. L. Besse, Einstein Manifolds (Springer, Berlin, 1987).

    Book  Google Scholar 

  23. J. Mikeš, V. Rovenski, and S. E. Stepanov, “An example of Lichnerowicz-type Laplacian,” Ann. Glob. Anal. Geom. 58, 19–34 (2020).

    Article  MathSciNet  Google Scholar 

  24. P. Li, Geometric Analysis (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  25. Ch. Barbance, “Sur les tenseurs symétriques,” C. R. Acad. Sci. Paris Sér. A 276, 387–389 (1973).

    MathSciNet  MATH  Google Scholar 

  26. S. Stepanov, I. Tsyganok and J. Mikeš, “On the Sampson Laplacian,” Filomat 32 (4), 1059–1070 (2019).

    Article  MathSciNet  Google Scholar 

  27. K. Yano and S. Bochner, Curvature and Betti Numbers (Princeton Univ. Press, Princeton, 1953).

    MATH  Google Scholar 

  28. E. Calabi, “An extension of E. Hopf’s maximum principle with an application to Riemannian geometry,” Duke Math. J. 25, 45–56 (1957).

    MathSciNet  MATH  Google Scholar 

  29. P. Li and R. Schoen, “\(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds,” Acta Math. 153 (1), 279–301 (1984).

    Article  MathSciNet  Google Scholar 

  30. S. A. Shcherbakov, “Regularity of a radial field on a Hadamard manifold,” Math. Notes 34 (4), 793–801 (1983).

    Article  MathSciNet  Google Scholar 

  31. Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley, New York, 1969), Vol. 2.

    MATH  Google Scholar 

  32. R. G. Bettiol and R. A. E. Mendes, Sectional Curvature and Weitzenböck Formulae, arXiv: 1708.09033 (2017).

  33. M. Takeuchi, “Parallel submanifolds of space forms,” in Manifolds and Lie Groups (Basel, Birkhäuser, 1981), pp. 429–447.

    Article  MathSciNet  Google Scholar 

  34. L. P. Eisenhart, Riemannian Geometry (Princeton Univ. Press, Princeton, 1926).

    MATH  Google Scholar 

  35. D. M. J. Calderbank, “Refined Kato inequalities and conformal weights in Riemannian geometry,” J. Funct. Anal. 173, 214–255 (2000).

    Article  MathSciNet  Google Scholar 

  36. H. Wu and R. E. Green, “Integrals of subharmonic functions on manifolds of nonnegative curvature,” Invent. Math. 27, 265–298 (1974).

    Article  MathSciNet  Google Scholar 

  37. S. T. Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry,” Indiana Univ. Math. J. 25 (7), 659–679 (1976).

    Article  MathSciNet  Google Scholar 

  38. M. Berger and D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold,” J. Differential Geometry 3, 379–392 (1969).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Stepanov.

Additional information

Translated from Matematicheskie Zametki, 2021, Vol. 109, pp. 901-911 https://doi.org/10.4213/mzm11955.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.E., Tsyganok, I.I. Codazzi and Killing Tensors on a Complete Riemannian Manifold. Math Notes 109, 932–939 (2021). https://doi.org/10.1134/S0001434621050266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621050266

Keywords

Navigation