Skip to main content
Log in

\(L^p\)-Fourier asymptotics, Hardy-type inequality and fractal measures

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Suppose \(\mu \) is an \(\alpha \)-dimensional fractal measure for some \(0<\alpha <n\). Inspired by the results proved by Strichartz (J Funct Anal 89:154–187, 1990), we discuss the \(L^p\)-asymptotics of the Fourier transform of \(fd\mu \) by estimating bounds of

$$\begin{aligned} \underset{L\rightarrow \infty }{\liminf }\ \frac{1}{L^k} \int _{|\xi |\le L}\ |\widehat{fd\mu }(\xi )|^pd\xi , \end{aligned}$$

for \(f\in L^p(d\mu )\) and \(2<p<2n/\alpha \). In a different direction, we prove a Hardy type inequality, that is,

$$\begin{aligned} \int \frac{|f(x)|^p}{(\mu (E_x))^{2-p}}d\mu (x)\le C\ \underset{L\rightarrow \infty }{\liminf }\frac{1}{L^{n-\alpha }} \int _{B_L(0)}|\widehat{fd\mu }(\xi )|^pd\xi \end{aligned}$$

where \(1\le p\le 2\) and \(E_x=E\cap (-\infty ,x_1]\times (-\infty ,x_2]\ldots (-\infty ,x_n]\) for \(x=(x_1,\ldots x_n)\in {\mathbb R}^n\) generalizing the one dimensional results by Hudson and Leckband (J Funct Anal 108:133–160, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agmon, S., Hormander, L.: Asymptotic properties of solutions of differential equations with simple characteristics. J. Anal. Math. 30, 1–38 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovsky, M.L., Narayanan, E.K.: \(L^p\)-integrability, supports of Fourier transforms and uniqueness for convolution equations. J. Fourier Anal. Appl. 10(3), 315–324 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press, Inc., Boston (1988)

    MATH  Google Scholar 

  4. Cutler, C.D.: The density theorem and hausdorff inequality for packing measure in general metric spaces. Ill. J. Math. 39, 676–694 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Falconer, K.J.: The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  6. Hormander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer, Berlin (1983)

    MATH  Google Scholar 

  7. Hudson, S., Leckband, M.: Hardy’s inequality and fractal measures. J. Funct. Anal. 108, 133–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lau, K.S.: Fractal measures and mean \(p\)-variations. J. Funct. Anal. 108, 427–457 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lau, K., Wang, J.: Mean quadratic variations and Fourier asymptotics of self-similar measures. Mon. Hefte. Math. 115, 99–132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  12. Senthil Raani, K.S.: \(L^p\)-integrability, dimensions of supports of Fourier transforms and applications. J. Fourier Anal. Appl. 20(4), 801–815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stein, E.M.: Harmonic Analysis—Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  14. Strichartz, R.S.: Fourier asymptotics of fractal measures. J. Funct. Anal. 89, 154–187 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express her sincere gratitude to her research supervisor, Prof. E. K. Narayanan for his guidance and immense support. The author also wishes to thank Prof. Malabika Pramanik and Prof. Robert Strichartz for their valuable remarks. The author is grateful to Prof. Kaushal Verma for the financial assistance provided and UGC-CSIR for financial support. This work is a part of PhD dissertation and is supported in part by UGC Centre for Advanced Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Senthil Raani.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Raani, K.S. \(L^p\)-Fourier asymptotics, Hardy-type inequality and fractal measures. Monatsh Math 184, 459–487 (2017). https://doi.org/10.1007/s00605-017-1081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1081-7

Keywords

Mathematics Subject Classification

Navigation