Skip to main content
Log in

Nonclassical Linear Theories of Continuum Mechanics

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We present a brief survey of nonclassical linear theories of continuum mechanics. Thus, we give a concise characterization of the Eringen–Edelen nonlocal theory of elasticity, theories of polar and micropolar media, Toupin couple-stress theory of elasticity, Eringen–Suhubi–Mindlin micromorphic theory, Mindlin gradient theory of elasticity, and also the local gradient theory of deformation of elastic media that takes into account local mass displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Ambartsumyan, Micropolar Theory of Shells and Plates [in Russian], National Academy of Sciences of Armenia, Yerevan (1999).

  2. É. L. Aéro and E. V. Kuvshinskii, “Main equations of the theory of elasticity of media with rotation interaction of particles,” Fiz. Tverd. Tela, 2, No. 7, 1399–1409 (1960).

    Google Scholar 

  3. P. A. Belov and S. A. Lurie, “A continuum model of microheterogeneous media,” Prikl. Mat. Mekh., 73, Issue 5, 833–848 (2009); English translation: J. Appl. Math. Mech., 73, No. 5, 599–608 (2009); https://doi.org/10.1016/j.jappmathmech.2009.11.013.

  4. Ya. I. Burak, Ye. Ya. Chaplya, V. F. Kondrat, and O. R. Hrytsyna, “Mathematical modeling of thermomechanical processes in elastic bodies with regard for local mass displacements,” Dop. Nats. Akad. Nauk Ukr., No. 6, 45–49 (2007).

  5. Ya. I. Burak and T. S. Nagirnii, “Theoretical principles for computing local-gradient thermomechanical systems with allowance for subsurface phenomena,” Fiz.-Khim. Mekh. Mater., 29, No. 4, 24–30 (1993); English translation: Mater. Sci., 29, No. 4, 349–354 (1994); https://doi.org/10.1007/BF00566442.

  6. Ya. I. Burak, “Determining relations of local-gradient thermomechanics,” Dop. Akad. Nauk Ukr. RSR. Ser. A, No. 12, 19–23 (1987).

  7. O. Hrytsyna, “On the description of the influence of local mass displacements on shear stresses,” Fiz.-Mat. Model. Inf. Tekhnol., Issue 16, 61–75 (2012).

  8. O. Hrytsyna, “Determination of the surface energy of solid bodies,” Fiz.-Mat. Model. Inf. Tekhnol., Issue 17, 43–54 (2013).

    Google Scholar 

  9. O. R. Hrytsyna, “Influence of subsurface inhomogeneity on the propagation of SH waves in isotropic materials,” Fiz.-Khim. Mekh. Mater., 53, No. 2, 128–134 (2017); English translation: Mater. Sci., 53, No. 2, 273–281 (2017); https://doi.org/10.1007/s11003-017-0072-0.

  10. O. Hrytsyna, T. Nahirnyi, and K. Chervinka, “Local-gradient approach in thermomechanics,” Fiz.-Mat. Model. Inf. Tekhnol., Issue 3, 72–83 (2006).

    Google Scholar 

  11. O. Hrytsyna and V. Kondrat, Thermomechanics of Condensed Systems with Regard for Local Mass Displacements: I. Fundamentals of the Theory [in Ukrainian], Rastr-7, Lviv (2017).

  12. O. Hrytsyna and V. Kondrat, Thermomechanics of Condensed Systems with Regard for Local Mass Displacements: II. Applied Investigations [in Ukrainian], Rastr-7, Lviv (2019).

  13. V. I. Erofeev, Wave Processes in Solid Bodies with Microstructures [in Russian], Moscow University, Moscow (1999).

    Google Scholar 

  14. V. F. Kondrat and O. R. Hrytsyna, “Relations of gradient thermomechanics taking into account the irreversibility and inertia of local mass displacement,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 1, 91–100 (2011); English translation: J. Math. Sci., 183, No. 1, 100–111 (2012); https://doi.org/10.1007/s10958-012-0800-9.

  15. V. Kondrat, T. Nahirnyi, and O. Hrytsyna, “Formation and mutual influence of near-surface inhomogeneities in the elastic layer with regard for the irreversibility of local mass displacements,” Mashynoznavstvo, No. 3 (129), 31–36 (2008).

  16. E. V. Kuvshinskii and É. L. Aéro, “Continuum theory of asymmetric elasticity. Influence of 'internal rotation',” Fiz. Tverd. Tela., 5, No. 9, 2591–2598 (1963).

    Google Scholar 

  17. I. A. Kunin, Theory of Elastic Bodies with Microstructure. Nonlocal Theory of Elasticity [in Russian], Nauka, Moscow (1975).

  18. S. A. Lisina and A. I. Potapov, “Generalized continuum models in nanomechanics,” Dokl. Ros. Akad. Nauk, 420, No. 3, 328–330 (2008).

    MATH  Google Scholar 

  19. S. A. Lurie and P. A. Belov, “Theory of media with preserved dislocations: Special cases: Cosserat and Aéro–Kuvshinskii media, porous media, and media with ‘twinning',” in: Proc. of the Conf. “Modern Problems of the Mechanics of Heterogeneous Media,” Institute of Applied Mechanics, Russian Academy of Sciences (2005), pp. 235–267.

  20. T. Nahirnyi and K. Chervinka, Thermodynamic Models and Methods of Thermomechanics with Regard for the Near-Surface and Structural Inhomogeneities. Fundamentals of Nanomechanics. I [in Ukrainian], Spolom, Lviv (2012).

  21. W. Nowacki, Teoria Sprężystości, PWN, Warszawa (1970).

    MATH  Google Scholar 

  22. Ya. S. Podstrigach, “On a nonlocal theory of solid body deformation,” Prikl. Mekh., 3, No. 2, 71–76 (1967); English translation: Sov. Appl. Mech., 3, No. 2, 44–46 (1967); https://doi.org/10.1007/BF00885584.

  23. G. N. Savin, Fundamentals of the Plane Problem of the Couple Stress Theory of Elasticity [in Russian], Kyiv State University, Kyiv (1965).

    Google Scholar 

  24. G. N. Savin, A. A. Lukashev, E. M. Lysko, S. V. Veremeenko, and G. G. Agas’ev, “Elastic wave propagation in a Cosserat continuum with constrained particle rotation,” Prikl. Mekh., 6, No. 6, 27–41 (1970); English translation: Sov. Appl. Mech., 6, No. 6, 599–602 (1970), https://doi.org/10.1007/BF00888458.

  25. G. N. Savin and Y. N. Nemish, “Investigations into stress concentration in the moment theory of elasticity (a survey),” Prikl. Mekh., 4, No. 12, 1–17 (1968); English translation: Sov. Appl. Mech., 4, No. 12, 1–15 (1968); https://doi.org/10.1007/BF00886725.

  26. S. O. Sarkisyan, “Micropolar theory of thin rods, plates, and shells,” Izv. Nats. Akad. Nauk Armen., Mekh., 58, No. 2, 84–95 (2005).

    Google Scholar 

  27. S. O. Sarkisyan, “General mathematical models of micropolar elastic thin plates,” Izv. Nats. Akad. Nauk Armen. Mekh., 64, No. 1, 58–67 (2011).

    MathSciNet  Google Scholar 

  28. A. M. Abazari, S. M. Safavi, G. Rezazadeh, and L. G. Villanueva, “Modelling the size effects on the mechanical properties of micro/nano structures,” Sensors, 15, No. 11, 28543–28562 (2015); https://doi.org/10.3390/s151128543.

    Article  Google Scholar 

  29. E. C. Aifantis, “Update on a class of gradient theories,” Mech. Mater., 35, No. 3-6, 259–280 (2003); https://doi.org/10.1016/S0167-6636(02)00278-8.

    Article  Google Scholar 

  30. E. C. Aifantis, “Exploring the applicability of gradient elasticity to certain micro/nano reliability problems,” Microsyst. Technol., 15, No. 1, 109–115 (2009); https://doi.org/10.1007/s00542-008-0699-8.

    Article  Google Scholar 

  31. E. C. Aifantis, “A concise review of gradient models in mechanics and physics,” Front. Phys., 7, 239 (2020); https://doi.org/10.3389/fphy.2019.00239.

  32. B. S. Altan and E. C. Aifantis, “On some aspects in the special theory of gradient elasticity,” J. Mech. Behav. Mater., 8, No. 3, 231– 282 (1997); https://doi.org/10.1515/JMBM.1997.8.3.231.

    Article  Google Scholar 

  33. J. Altenbach, H. Altenbach, and V. Eremeyev, “On generalized Cosserat-type theories of plates and shells: a short review and bibliography,” Arch. Appl. Mech., 80, No. 1, 73–92 (2010); https://doi.org/10.1007/s00419-009-0365-3.

    Article  MATH  Google Scholar 

  34. B. Arash and Q. Wang, “A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes,” Comput. Mater. Sci., 51, No. 1, 303–313 (2012); https://doi.org/10.1016/j.commatsci.2011.07.040.

    Article  Google Scholar 

  35. H. Askes and E. C. Aifantis, “Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results,” Int. J. Solids Struct., 48, No. 13, 1962–1990 (2011); https://doi.org/10.1016/j.ijsolstr.2011.03.006.

    Article  Google Scholar 

  36. J. D. Axe, J. Harada, and G. Shirane, “Anomalous acoustic dispersion in centrosymmetric crystals with soft optic phonons,” Phys. Rev. B, 1, No. 3, 1227–1234 (1970); https://doi.org/10.1103/PhysRevB.1.1227.

    Article  Google Scholar 

  37. L. Behera and S. Chakraverty, “Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review,” Arch. Comput. Meth. Eng., 24, No. 3, 481–494 (2017); https://doi.org/10.1007/s11831-016-9179-y.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Chen, J. D. Lee, and A. Eskandarian, “Atomistic viewpoint of the applicability of microcontinuum theories,” Int. J. Solids Struct., 41, No. 8, 2085–2097 (2004); https://doi.org/10.1016/j.ijsolstr.2003.11.030.

    Article  MATH  Google Scholar 

  39. N. Cordero, A Strain Gradient Approach to the Mechanics of Micro and Nanocrystals, Materials. Thèse de Doctorat, École Nationale Supérieure des Mines de Paris, Paris (2011).

  40. E. Cosserat and F. Cosserat, Théorie des Corps Déformable, Hermann et Fils, Paris (1909).

    MATH  Google Scholar 

  41. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B, 69, No. 16, 165410 (2004); https://doi.org/10.1103/PhysRevB.69.165410.

  42. F. Dell’Isola, A. D. Corte, and I. Giorgio, “Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives,” Math. Mech. Solids, 22, No. 4, 852–872 (2017); https://doi.org/10.1177/1081286515616034.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. A. Eltaher, M. E. Khater, and S. A. Emam, “A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams,” Appl. Math. Model., 40, No. 5-6, 4109–4128 (2016); https://doi.org/10.1016/j.apm.2015.11.026.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Engelbrecht and M. Braun, “Nonlinear waves in nonlocal media,” Appl. Mech. Rev., 51, No. 8, 475–488 (1998); https://doi.org/10.1115/1.3099016.

    Article  Google Scholar 

  45. A. C. Eringen, “Linear theory of micropolar elasticity,” Indiana J. Math. Mech., 15, No. 6, 909–923 (1966); https://doi.org/10.1512/iumj.1966.15.15060.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. C. Eringen, “Mechanics of micromorphic continua,” in: E. Kröner (editor) Mechanics of Generalized Continua, Springer, Berlin (1968), pp. 18–35; https://doi.org/10.1007/978-3-662-30257-6_2.

    Chapter  Google Scholar 

  47. A. C. Eringen, Theory of Micropolar Elasticity, in: H. Liebowitz (editor), Fracture, An Advanced Treatise, Vol. II: Mathematical Fundamentals, Academic Press, New York (1968), pp. 621–729.

  48. A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., 54, No. 9, 4703–4710 (1983); https://doi.org/10.1063/1.332803.

    Article  Google Scholar 

  49. A. C. Eringen, Microcontinuum Field Theories. 1. Foundation and Solids, Springer, New York (1999).

    Book  MATH  Google Scholar 

  50. A. С. Eringen, Nonlocal Continuum Field Theories, Springer, New York (2002).

    MATH  Google Scholar 

  51. A. C. Eringen and C. B. Kafadar, “Polar field theories,” in: Continuum Physics, Vol. IV: A. C. Eringen (editor), Polar and Nonlocal Field Theories, Academic Press, New York (1976), pp. 1–73; https://doi.org/10.1016/B978-0-12-240804-5.50007-5.

  52. A. C. Eringen and E. S. Suhubi, “Nonlinear theory of simple microelastic solids — I,” Int. J. Eng. Sci., 2, No. 2, 189–203 (1964); https://doi.org/10.1016/0020-7225(64)90004-7.

    Article  MATH  Google Scholar 

  53. J. Fernández-Sáez, R. Zaera, J. A. Loya, and J. N. Reddy, “Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved,” Int. J. Eng. Sci., 99, 107–116 (2016); https://doi.org/10.1016/j.ijengsci.2015.10.013.

  54. N. A. Fleck and J. W. Hutchinson, “A phenomenological theory for strain gradient effects in plasticity,” J. Mech. Phys. Solids, 41, No. 12, 1825–1857 (1993); https://doi.org/10.1016/0022-5096(93)90072-N.

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Forest, “Micromorphic approach for gradient elasticity, viscoplasticity, and damage,” J. Eng. Mech., 135, No. 3, 117–131 (2009); https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117).

    Article  Google Scholar 

  56. S. Forest, N. M. Cordero, and E. P. Busso, “First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales,” Comput. Mater. Sci., 50, No. 4, 1299–1304 (2011); https://doi.org/10.1016/j.commatsci.2010.03.048.

    Article  Google Scholar 

  57. X.-L. Gao and S. K. Park, “Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem,” Int. J. Solids Struct., 44, No. 22–23, 7486–7499 (2007); https://doi.org/10.1016/j.ijsolstr.2007.04.022.

    Article  MATH  Google Scholar 

  58. P. Germain, “The method of virtual power in continuum mechanics. Part 2. Microstructure,” SIAM J. Appl. Math., 25, No. 3, 556– 575 (1973); https://doi.org/10.1137/0125053.

    Article  MATH  Google Scholar 

  59. I.-D. Ghiba, P. Neff, A. Madeo, and I. Münch, “A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions,” Math. Mech. Solids, 22, No. 6, 1221–1266 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  60. A. E. Green and R. S. Rivlin, “Simple force and stress multipoles,” Arch. Ration. Mech. Anal., 16, No. 5, 325–353 (1964); https://doi.org/10.1007/BF00281725.

    Article  MathSciNet  MATH  Google Scholar 

  61. A. E. Green and R. S. Rivlin, “Multipolar continuum mechanics,” Arch. Ration. Mech. Anal., 17, No. 2, 113–147 (1964); https://doi.org/10.1007/BF00253051.

    Article  MathSciNet  MATH  Google Scholar 

  62. A. A. Gusev and S. A. Lurie, “Symmetry conditions in strain gradient elasticity,” Math. Mech. Solids, 22, No. 4, 683–691 (2017); https://doi.org/10.1177/1081286515606960.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. R. Hadjesfandiari and G. F. Dargush, “Couple stress theory for solids,” Int. J. Solids Struct., 48, No. 18, 2496–2510 (2011); https://doi.org/10.1016/j.ijsolstr.2011.05.002.

    Article  Google Scholar 

  64. A. R. Hadjesfandiari and G. F. Dargush, Evolution of Generalized Couple-Stress Continuum Theories: A Critical Analysis. Preprint arXiv: 1501.03112 (2015).

  65. S. Hassanpour and G. R. Heppler, “Micropolar elasticity theory: A survey of linear isotropic equations, representative notations, and experimental investigations,” Math. Mech. Solids, 22, No. 2, 224–242 (2017); https://doi.org/10.1177/1081286515581183.

    Article  MathSciNet  MATH  Google Scholar 

  66. O. R. Hrytsyna, “Applications of the local gradient elasticity to the description of the size effect of shear modulus,” SN Appl. Sci., 2, No. 8, 1453 (2020); https://doi.org/10.1007/s42452-020-03217-9.

  67. O. Hrytsyna, “A Bernoulli–Euler beam model based on the local gradient theory of elasticity,” J. Mech. Mater. Struct., 15, No. 4, 471–487 (2020); https://doi.org/10.2140/jomms.2020.15.471.

  68. T. J. Jaramillo, A Generalization of the Energy Function of Elasticity Theory, Dissertation, University of Chicago (1929).

  69. G. Y. Jing, H. L. Duan, X. M. Sun, Z. S. Zhang, J. Xu, Y. D. Li, J. X. Wang, and D. P. Yu, “Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy,” Phys. Rev. B, 73, No. 23, 235409 (2006); https://doi.org/10.1103/PhysRevB.73.235409.

  70. M. Jirásek, “Nonlocal theories in continuum mechanics,” Acta Polytech., 44, Nos. 5-6, 16–34 (2004); https://doi.org/10.14311/610.

  71. C. B. Kafadar and A. C. Eringen, “Micropolar media — I: The classical theory,” Int. J. Eng. Sci., 9, No. 3, 271–305 (1971); https://doi.org/10.1016/0020-7225(71)90040-1.

    Article  MATH  Google Scholar 

  72. C. B. Kafadar and A. C. Eringen, “Micropolar media — II: The relativistic theory,” Int. J. Eng. Sci., 9, No. 3, 307–329 (1971); https://doi.org/10.1016/0020-7225(71)90041-3.

    Article  MATH  Google Scholar 

  73. K. Kiani, “Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique,” Phys. E: Low Dimens. Syst. Nanostructures, 43, No. 1, 387–397 (2010), https://doi.org/10.1016/j.physe.2010.08.022.

    Article  Google Scholar 

  74. S. Kong, S. Zhou, Z. Nie, and K. Wang, “Static and dynamic analysis of micro beams based on strain gradient elasticity theory,” Int. J. Eng. Sci., 47, No. 4, 487–498 (2009); https://doi.org/10.1016/j.ijengsci.2008.08.008.

    Article  MathSciNet  MATH  Google Scholar 

  75. R. Lakes, “Cosserat micromechanics of structured media experimental methods,” in: Proc. of the American Society for Composites. The 3rd Technical Conf. “Integrated Composites Technology” (September 25–29, 1988), Seattle, Washington (1988), pp. 505–516.

  76. R. Lakes, “Experimental methods for study of Сosserat elastic solids and other generalized elastic continua,” in: H. Mühlaus (editor), Continuum Models for Materials with Microstructure, Wiley, New York (1995), pp. 1–22.

  77. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, 51, No. 8, 1477–1508 (2003); https://doi.org/10.1016/S0022-5096(03)00053-X.

    Article  MATH  Google Scholar 

  78. C. Liebold and W. H. Müller, “Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters,” Bull. TICMI, 19, No. 1, 45–55 (2015).

    MathSciNet  MATH  Google Scholar 

  79. K. M. Liew, Y. Zhang, and L. W. Zhang, “Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges,” J. Model. Mech. Mater., 1, No. 1, 20160159 (2017); https://doi.org/10.1515/jmmm-2016-0159.

  80. C. W. Lim, G. Zhang, and J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids, 78, 298–313 (2015); https://doi.org/10.1016/j.jmps.2015.02.001.

  81. P. Lu, P. Q. Zhang, H. P. Lee, C. M. Wang, and J. N. Reddy, “Non-local elastic plate theories,” Proc. R. Soc. A, 463, No. 2088, 3225–3240 (2007); https://doi.org/10.1098/rspa.2007.1903.

    Article  MathSciNet  MATH  Google Scholar 

  82. H. M. Ma, X.-L. Gao, and J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, 56, No. 12, 3379–3391 (2008); https://doi.org/10.1016/j.jmps.2008.09.007.

    Article  MathSciNet  MATH  Google Scholar 

  83. R. Maranganti and P. Sharma, “A novel atomistic approach to determine strain gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir)relevance for nanotechnologies,” J. Mech. Phys. Solids, 55, No. 9, 1823–1852 (2007); https://doi.org/10.1016/j.jmps.2007.02.011.

    Article  MATH  Google Scholar 

  84. G. A. Maugin, “Generalized continuum mechanics: What do we mean by that?” in: G. Maugin and A. Metrikine (editors), Mechanics of Generalized Continua. Advances in Mechanics and Mathematics, Vol. 21, Springer (2010), pp. 3–13; https://doi.org/10.1007/978-1-4419-5695-8_1.

  85. A. W. McFarland and J. S. Colton, “Role of material microstructure in plate stiffness with relevance to microcantilever sensors,” J. Micromech. Microeng., 15, No. 5, 1060–1067 (2005); https://doi.org/10.1088/0960-1317/15/5/024.

    Article  Google Scholar 

  86. R. D. Mindlin, “Micro-structure in linear elasticity,” Arch. Ration. Mech. Anal., 16, No. l, 51–78 (1964); https://doi.org/10.1007/BF00248490.

  87. R. D. Mindlin, “Second gradient of strain and surface-tension in linear elasticity,” Int. J. Solids Struct., 1, No. 4, 417–438 (1965); https://doi.org/10.1016/0020-7683(65)90006-5.

    Article  Google Scholar 

  88. R. D. Mindlin, “Theories of elastic continua and crystal lattice theories,” in: E. Kröner (editor), Mechanics of Generalized Continua. Proc of IUTAM Symposia (Stuttgart, 1967), Springer, Berlin (1968), pp. 312–320; https://doi.org/10.1007/978-3-662-30257-6_38.

    Chapter  Google Scholar 

  89. R. D. Mindlin, “Elasticity, piezoelectricity and crystal lattice dynamics,” J. Elast., 2, No. 4, 217–282 (1972); https://doi.org/10.1007/BF00045712.

    Article  Google Scholar 

  90. R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal., 11, No. 1, 415–448 (1962); https://doi.org/10.1007/BF00253946.

    Article  MathSciNet  MATH  Google Scholar 

  91. A. Naderi and А. R. Saidi, “Common nonlocal elastic constitutive relation and material-behavior modeling of nanostructures,” Proc. Inst. Mech. Eng. N: J. Nanomater. Nanoeng. Nanosyst., 231, No. 2, 83–87 (2017); https://doi.org/10.1177/2397791417712870.

  92. T. Nahirnyj and K. Tchervinka, “Mathematical modeling of structural and near-surface non-homogeneities in thermoelastic thin films,” Int. J. Eng. Sci., 91, 49–62 (2015); https://doi.org/10.1016/j.ijengsci.2015.02.001.

  93. J. Niiranen, V. Balobanov, J. Kiendl, and S. B. Hosseini, “Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models,” Math. Mech. Solids. 24, No. 1, 312–335 (2019); https://doi.org/10.1177/1081286517739669.

  94. W. Nowacki, Theory of Micropolar Elasticity, Springer, Wien (1970).

    Book  MATH  Google Scholar 

  95. F. Ojaghnezhad and H. M. Shodja, “A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity,” Int. J. Solids Struct., 50, No. 24, 3967–3974 (2013); https://doi.org/10.1016/j.ijsolstr.2013.08.004.

    Article  Google Scholar 

  96. S. Papargyri-Beskou and D. E. Beskos, “Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates,” Arch. Appl. Mech., 78, No. 8, 625–635 (2008); https://doi.org/10.1007/s00419-007-0166-5.

    Article  MATH  Google Scholar 

  97. C. Papenfuss and S. Forest, “Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom,” J. Non-Equilib. Thermodyn., 31, No. 4, 319–353 (2006); https://doi.org/10.1515/jnetdy.2006.014.

    Article  MATH  Google Scholar 

  98. S. K. Park and X.-L. Gao, “Bernoulli–Euler beam model based on a modified couple stress theory,” J. Micromech. Microeng., 16, No. 11, 2355–2359 (2006); https://doi.org/10.1088/0960-1317/16/11/015.

    Article  Google Scholar 

  99. C. Polizzotto, “Nonlocal elasticity and related variational principles,” Int. J. Solids Struct., 38, No. 42–43, 7359–7380 (2001); https://doi.org/10.1016/S0020-7683(01)00039-7.

    Article  MathSciNet  MATH  Google Scholar 

  100. C. Polizzotto, “A unifying variational framework for stress gradient and strain gradient elasticity theories,” Eur. J. Mech. A/Solids, 49, 430–440 (2015); https://doi.org/10.1016/j.euromechsol.2014.08.013.

  101. C. Polizzotto, “A hierarchy of simplified constitutive models within isotropic strain gradient elasticity,” Eur. J. Mech. A/Solids, 61, 92–109 (2017); https://doi.org/10.1016/j.euromechsol.2016.09.006.

  102. Yu. Z. Povstenko, “Straight disclinations in nonlocal elasticity,” Int. J. Eng. Sci., 33, No. 4, 575–582 (1995); https://doi.org/10.1016/0020-7225(94)00070-0.

    Article  MATH  Google Scholar 

  103. J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams,” Int. J. Eng. Sci., 45, Nos. 2-8, 288–307 (2007); https://doi.org/10.1016/j.ijengsci.2007.04.004.

  104. M. Repka, V. Sladek, and J. Sladek, “Gradient elasticity theory enrichment of plate bending theories,” Compos. Struct., 202, 447– 457 (2018); https://doi.org/10.1016/j.compstruct.2018.02.065.

  105. G. Romano and R. Barretta, “Nonlocal elasticity in nanobeams: the stress-driven integral model,” Int. J. Eng. Sci., 115, 14–27 (2017); https://doi.org/10.1016/j.ijengsci.2017.03.002.

  106. M. B. Rubin, Cosserat Theories: Shells, Rods and Points, in: G. M. L. Gladwell (editor), Ser. Solid Mechanics and Its Applications, Vol. 79, Kluwer, Dordrecht (2000); https://doi.org/10.1007/978-94-015-9379-3.

  107. M. M. Shokrieh and I. Zibaei, “Determination of the appropriate gradient elasticity theory for bending analysis of nano-beams by considering boundary conditions effect,” Lat. Am. J. Solids Struct., 12, No. 12, 2208–2230 (2015); https://doi.org/10.1590/1679-78251589.

    Article  Google Scholar 

  108. J. Sladek, V. Sladek, M. Repka, and S. Schmauder, “Gradient theory for crack problems in quasicrystals,” Eur. J. Mech. A/Solids, 77, 103813 (2019); https://doi.org/10.1016/j.euromechsol.2019.103813.

  109. E. S. Suhubl and A. C. Eringen, “Nonlinear theory of simple microelastic solids — II,” Int. J. Eng. Sci., 2, No. 4, 389–404 (1964); https://doi.org/10.1016/0020-7225(64)90017-5.

    Article  Google Scholar 

  110. V. Sundararaghavan and A. Waas, “Non-local continuum modeling of carbon nanotubes: Physical interpretation of non-local kernels using atomistic simulations,” J. Mech. Phys. Solids, 59, No. 6, 1191–1203 (2011); https://doi.org/10.1016/j.jmps.2011.03.009.

    Article  MathSciNet  MATH  Google Scholar 

  111. C. Tang and G. Alici, “Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: I. Experimental determination of length-scale factors,” J. Phys. D: Appl. Phys., 44, No. 33, 335501 (2011); https://doi.org/10.1088/0022-3727/44/33/335501.

  112. C. Tekoğlu and P. R. Onck, “Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models,” J. Mech. Phys. Solids, 56, No. 12, 3541–3564 (2008); https://doi.org/10.1016/j.jmps.2008.06.007.

    Article  MATH  Google Scholar 

  113. H.-T. Thai, T. P. Vo, T.-K. Nguyen, and S.-E. Kim, “A review of continuum mechanics models for size-dependent analysis of beams and plates,” Compos. Struct., 177, 196–219 (2017); https://doi.org/10.1016/j.compstruct.2017.06.040.

  114. R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Rat. Mech. Anal., 11, No. 1, 385–414 (1962); https://doi.org/10.1007/BF00253945.

    Article  MathSciNet  MATH  Google Scholar 

  115. J. Vila, R. Zaera, and J. Fernández-Sáez, “Axisymmetric free vibration of closed thin spherical nanoshells with bending effects,” J. Vibr. Control., 22, No. 18, 3789–3806 (2016); https://doi.org/10.1177/1077546314565808.

    Article  MathSciNet  MATH  Google Scholar 

  116. Q. Wang and K. M. Liew, “Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures,” Phys. Lett. A, 363, No. 3, 236–242 (2007); https://doi.org/10.1016/j.physleta.2006.10.093.

    Article  Google Scholar 

  117. Q. Wang and C. M. Wang, “The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes,” Nanotechnology, 18, No. 7, 075702 (2007); https://doi.org/10.1088/0957-4484/18/7/075702.

  118. K. F. Wang, B. L. Wang, and T. Kitamura, “A review on the application of modified continuum models in modeling and simulation of nanostructures,” Acta Mech. Sin., 32, No. 1, 83–100 (2016); https://doi.org/10.1007/s10409-015-0508-4.

    Article  MathSciNet  MATH  Google Scholar 

  119. C.-P. Wu and J.-J. Yu, “A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory,” Arch. Appl. Mech., 89, No. 9, 1761–1792 (2019); https://doi.org/10.1007/s00419-019-01542-z.

    Article  Google Scholar 

  120. S. T. Yaghoubi, V. Balobanov, S. M. Mousavi, and J. Niiranen, “Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler–Bernoulli and shear-deformable beams,” Eur. J. Mech. A/Solids, 69, 113–123 (2018); https://doi.org/10.1016/j.euromechsol.2017.11.012.

  121. B. Yakaiah and A. Srihari Rao, “Higher order nonlocal strain gradient approach for wave characteristics of carbon nanorod,” Nonlinear Anal.: Model. Control, 19, No. 4, 660–668 (2014). https://doi.org/10.15388/NA.2014.4.10.

  122. F. Yang, A. С. M. Chong, D. С. С. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., 39, No. 10, 2731–2743 (2002); https://doi.org/10.1016/S0020-7683(02)00152-X.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. R. Hrytsyna.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 63, No. 3, pp. 85–106, July–September, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrytsyna, О.R. Nonclassical Linear Theories of Continuum Mechanics. J Math Sci 273, 101–123 (2023). https://doi.org/10.1007/s10958-023-06487-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06487-x

Keywords

Navigation