Skip to main content
Log in

Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Computation of the volumes of polyhedra is a classical geometry problem known since ancient mathematics and retaining its importance until present time. Deriving volume formulas for 3-dimensional non-Euclidean polyhedra of a given combinatorial type is a very difficult problem. Nowadays, it is fully solved for a tetrahedron, the most simple polyhedron in the combinatorial sense. However, it is well known that for a polyhedron of a special type its volume formula becomes much simpler. This fact was noted by Lobachevskii who found the volume of the so-called ideal tetrahedron in hyperbolic space (all vertices of this tetrahedron are on the absolute). In this survey, we present main results on volumes of arbitrary non-Euclidean tetrahedra and polyhedra of special types (both tetrahedra and polyhedra of more complex combinatorial structure) in 3-dimensional spherical and hyperbolic spaces of constant curvature K = 1 and K = 1, respectively. Moreover, we consider the new method by Sabitov for computation of volumes in the hyperbolic space (described by the Poincaré model in the upper half-space). This method allows one to derive explicit volume formulas for polyhedra of arbitrary dimension in terms of coordinates of vertices. Considering main volume formulas for non-Euclidean polyhedra, we will give proofs (or sketches of proofs) for them. This will help the reader to get an idea of basic methods for computation of volumes of bodies in non-Euclidean spaces of constant curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Abrosimov, “To the solution of Seidel’s problem on the volumes of hyperbolic tetrahedra,” Sib. Elektron. Mat. Izv., 6, 211–218 (2009).

    MathSciNet  MATH  Google Scholar 

  2. N. V. Abrosimov, “Seidel’s problem on the volume of a non-Euclidean tetrahedron,” Dokl. RAN, 435, No. 1, 7–10 (2010).

    MathSciNet  MATH  Google Scholar 

  3. N. V. Abrosimov and G. A. Baygonakova, “Hyperbolic octahedron with mmm-symmetry,” Sib. Mat. Zh., 10, 123–140 (2013).

    MathSciNet  MATH  Google Scholar 

  4. N. V. Abrosimov, M. Godoy-Molina, and A. D. Mednykh, “On the volume of spherical octahedron with symmetries,” Sovrem. Mat. i Ee Prilozh., 60, 3–12 (2008).

    MATH  Google Scholar 

  5. N. V. Abrosimov, E. S. Kudina, and A. D. Mednykh, “On the volume of a hyperbolic octahedron with \( \overline{3} \)-symmetry,” Tr. MIAN, 288, 7–15 (2015).

  6. N. V. Abrosimov, E. S. Kudina, and A. D. Mednykh, “Volume of a hyperbolic hexahedron with \( \overline{3} \)-symmetry,” Sib. Elektron. Mat. Izv., 13, 1150–1158 (2016).

  7. N. V. Abrosimov and A. D. Mednykh, “Volumes of polytopes in spaces of constant curvature,” Fields Inst. Commun., 70, No. 1, 1–26 (2014).

    MathSciNet  MATH  Google Scholar 

  8. N. V. Abrosimov and B. Vuong Huu, “The volume of a hyperbolic tetrahedron with symmetry group S4,” Tr. IMM UrO RAN, 23, No. 4, 2–17 (2017).

    Google Scholar 

  9. D. V. Alekseevskiy, E. B. Vinberg, and A. S. Solodovnikov, “Geometry of spaces of constant curvature,” Itogi Nauki i Tekhn. Sovrem. Probl. Mat. Fundam. Napravl., 29, 1–146 (1988).

  10. V. A. Alexandrov, “An example of a flexible polyhedron with nonconstant volume in the spherical space,” Beitr. Algebra Geom., 38, No. 1, 11–18 (1997).

    MathSciNet  MATH  Google Scholar 

  11. E. M. Andreev, “On convex polyhedra in Lobachevskii spaces,” Mat. Sb., 81, 445–478 (1970).

    MathSciNet  MATH  Google Scholar 

  12. E. M. Andreev, “On convex polyhedra of finite volume in Lobachevskii space,” Mat. Sb., 83, 256–260 (1970).

    MathSciNet  MATH  Google Scholar 

  13. G. A. Baygonakova, M. Godoy-Molina, and A. D. Mednykh, “On geometric properties of hyperbolic octahedron with mmm-symmetry,” Vestn. Kemerov. Gos. Univ., 47, No. 3/1, 13–18 (2011).

    Google Scholar 

  14. S. Bilinski, “Zur Begründung der elementaren Inhaltslehre in der hyperbolischen Ebene,” Math. Ann., 180, 256–268 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bolyai, “Appendix. The theory of space,” In: Janos Bolyai, Budapest (1987).

  16. V. M. Bukhshtaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Pak, “Cohomological rigidity of manifolds defined by 3-dimensional polyhedra,” Usp. Mat. Nauk, 434, No. 2, 3–66 (2017).

    Google Scholar 

  17. V. M. Bukhshtaber and T. E. Panov, Toric Actions in Topology and Combinatorics [in Russian], MTsNMO, Moscow (2004).

    MATH  Google Scholar 

  18. Yu. Cho and H. Kim, “On the volume formula for hyperbolic tetrahedra,” Discrete Comput. Geom., 22, 347–366 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Connely, I. Sabitov, and A. Walz, “The bellows conjecture,” Contrib. Algebra Geom., 38, No. 1, 1–10 (1997).

    MathSciNet  MATH  Google Scholar 

  20. H. S. Coxeter, “The functions of Schläfli and Lobatschefsky,” Quarterly J. Math. Oxford, 6, 13–29 (1935).

    Article  MATH  Google Scholar 

  21. H. S. Coxeter and S. L. Greitzer, Geometry Revisited, The Mathematical Association of America, Washington (1967).

    Book  MATH  Google Scholar 

  22. D. A. Derevnin and A. D. Mednykh, “A formula for the volume of hyperbolic tetrahedron,” Russ. Math. Surv., 60, No. 2, 346–348 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. A. Derevnin and A. D. Mednykh, “Volume of the Lambert spherical cube,” Mat. Zametki, 86, No. 2, 190–201 (2009).

    MATH  Google Scholar 

  24. D. A. Derevnin, A. D. Mednykh, and M. G. Pashkevich, “Volume of a symmetric tetrahedron in hyperbolic and spherical spaces,” Sib. Mat. Zh., 45, No. 5, 1022–1031 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Diaz, “A characterization of Gram matrices of polytopes,” Discrete Comput. Geom., 21, No. 4, 581–601 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Dickinson and M. Salmassi, “The right right triangle on the sphere,” College Math. J., 39, No. 1, 24–33 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. A. Gaifullin, “Sabitov polynomials for polyhedra in four dimensions,” Adv. Math., 252, 586–611 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. A. Gaifullin, “Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions,” Discrete Comput. Geom., 52, No. 2, 195–220 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. A. Gaifullin, “Analytical continuation of the volume and the bellows hypothesis in Lobachevskii spaces,” Mat. Sb., 206, No. 11, 61–112 (2015).

    MathSciNet  Google Scholar 

  30. A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with variable volumes,” Tr. MIAN, 288, 67–94 (2015).

    MATH  Google Scholar 

  31. A. A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces,” Mosc. Math. J., 17, No. 2, 269–290 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. V. Galiulin, S. N. Mikhalev, and I. Kh. Sabitov, “Some applications of the octahedron volume formula,” Mat. Zametki, 76, No. 1, 27–43 (2004).

    MathSciNet  MATH  Google Scholar 

  33. R. Guo and N. Sönmez, “Cyclic polygons in classical geometry,” C. R. Acad. Bulgare Sci., 64, No. 2, 185–194 (2011).

    MathSciNet  MATH  Google Scholar 

  34. R. Kellerhals, “On the volume of hyperbolic polyhedra,” Math. Ann., 285, No. 4, 541–569 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Kneser, “Der Simplexinhalt in der nichteuklidischen Geometrie,” Deutsche Math., 1, 337–340 (1936).

    MATH  Google Scholar 

  36. A. A. Kolpakov, A. D. Mednykh, and M. G. Pashkevich, “Volume formula for a ℤ2-symmetric tetrahedron,” Sib. Mat. Zh., 52, No. 3, 577–594 (2011).

    Article  MathSciNet  Google Scholar 

  37. V. A. Krasnov, “On integral expressions for volumes of hyperbolic tetrahedra,” Sovrem. Mat. Fundam. Napravl., 49, 89–98 (2013).

    Google Scholar 

  38. V. A. Krasnov, “On the volume of hyperbolic octahedra with nontrivial symmetry,” Sovrem. Mat. Fundam. Napravl., 51, 74–86 (2013).

    Google Scholar 

  39. V. A. Krasnov, “Non-Euclidean octahedra with mm2-symmetry,” Mat. Zametki, 99, No. 1, 145–148 (2016).

    MathSciNet  MATH  Google Scholar 

  40. V. A. Krasnov, “On volumes of hyperbolic simplexes,” Mat. Zametki, 106, No. 6, 866–880 (2019).

    Google Scholar 

  41. V. A. Krasnov, “On application of the modern proof of the Sforza formula to computation of the volumes of hyperbolic tetrahedra of a special form,” Sovrem. Mat. Fundam. Napravl., 65, No. 4, 623–634 (2019).

    Google Scholar 

  42. N. I. Lobachevskii, “Imaginary Geometry,” In: Complete Set of Works. Vol. 3, Moscow–Leningrad (1949).

  43. J. W. MClelland and T. Preston, A Treatise on Spherical Trigonometry with Application to Spherical Geometry and Numerous Examples. Part II, Macmillian and Co., London (1886).

  44. A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane,” Sib. Elektron. Mat. Izv., 9, 247–255 (2012).

    MATH  Google Scholar 

  45. J. Milnor, “Hyperbolic geometry: the first 150 years,” Bull. Am. Math. Soc., 6, No. 1, 307–332 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Mohanty, “The Regge symmetry is a scissors congruence in hyperbolic space,” Algebr. Geom. Topol., 3, 1–31 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Murakami, “The volume formulas for a spherical tetrahedron,” Acta Math. Vietnam, 33, No. 3, 219–253 (2018).

    Google Scholar 

  48. J. Murakami and A. Ushijima, “A volume formula for hyperbolic tetrahedra in terms of edge lengths,” J. Geom., 83, No. 1-2, 153–163 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Murakami and M. Yano, “On the volume of a hyperbolic and spherical tetrahedron,” Commun. Anal. Geom., 13, 379–400 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Murakami and Y. Yokota, Volume Conjecture for Knots, Springer, Singapore (2018).

    Book  MATH  Google Scholar 

  51. F. V. Petrov, “Inscribed quadrilaterals and trapezoids in absolute geometry,” In: Mathematical Education. 13, MTsNMO, Moscow, pp. 149–154 (2009).

  52. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Elementary Functions [in Russian], Nauka, Moscow (1981).

  53. I. Kh. Sabitov, “Volume of a polyhedron as a function of its metrics,” Fundam. i Prikl. Mat., 2, No. 4, 1235–1246 (1996).

    MathSciNet  MATH  Google Scholar 

  54. I. Kh. Sabitov, “Volumes of polihedra,” In: Mathematical Education. 21, MTsNMO, Moscow (2009).

  55. I. Kh. Sabitov, “On one method for computation of volumes of bodies,” Sib. Elektron. Mat. Izv., No. 10, 615–626 (2013).

  56. I. Kh. Sabitov, “Hyperbolic tetrahedron: computing volume with application to the proof of the Schläfli formula,” Model. i Analiz Inform. Sistem, 20, No. 6, 149–161 (2013).

    Article  Google Scholar 

  57. L. Schläfli, “Theorie der vielfachen Kontinuität,” In: Gesammelte Mathematische Abhandlungen, Birkhäuser, Basel (1950).

  58. G. Sforza, “Spazi metrico-proiettivi,” Ric. Esten. Different. Ser., 8, No. 3, 3–66 (1906).

    Google Scholar 

  59. D. Yu. Sokolova, “On the area of a trapezoid on the Lobachevskii plane,” Sib. Elektron. Mat. Izv., 9, 256–260 (2012).

    MathSciNet  MATH  Google Scholar 

  60. W. Thurston, “Three-dimensional manifold, Kleinian groups and hyperbolic geometry,” Bull. Am. Math. Soc. (N.S.), 6, No. 3, 357–381 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Ushijima, “A volume formula for generalized hyperbolic tetrahedra,” Non-Euclid. Geom., 581, 249–265 (2006).

    Article  MATH  Google Scholar 

  62. J. E. Valentine, “An analogue of Ptolemy’s theorem and its converse in hyperbolic geometry,” Pacific J. Math., 34, 817–825 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Yu. Vesnin, “Volumes of 3-dimensional hyperbolic Labelle’s manifolds,” Mat. Zametki, 64, No. 1, 17–23 (1998).

    MathSciNet  MATH  Google Scholar 

  64. A. Yu. Vesnin, “Rectangular polyhedra and three-dimensional hyperbolic manifolds,” Usp. Mat. Nauk, 434, No. 2, 147–190 (2017).

    Google Scholar 

  65. E. B. Vinberg, “Volumes of non-Euclidean polyhedra,” Usp. Mat. Nauk, 290, No. 2, 17–46 (1993).

    MathSciNet  MATH  Google Scholar 

  66. L. Wimmer, “Cyclic polygons in non-Euclidean geometry,” Elem. Math., 66, 74–82 (2011).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Krasnov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 66, No. 4, Algebra, Geometry, and Topology, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, V.A. Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature. J Math Sci 267, 554–670 (2022). https://doi.org/10.1007/s10958-022-06161-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06161-8

Navigation