Skip to main content
Log in

Stochastic Models of Chemotaxis Processes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Probabilistic representations of weak solutions to the Cauchy problem are constructed for systems of nonlinear parabolic equations arising in chemotaxis. These equations include as a special case the Keller–Segel model. Bibliography: 12 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Perthame, “PDE models for chemotactic movements: parabolic, hyperbolic and kinetic,” Appl. Math., 49, No. 6, 539–564 (2014).

    Article  MathSciNet  Google Scholar 

  2. L. Corrias, M. Escobedo, and J. Matos, “Existence, uniqueness and asymptotic behaviour of the solutions to the fully parabolic Keller-Segel system in the plane,” J. Diff. Eq., 257, No. 6, 1840–1878 (2014).

    Article  Google Scholar 

  3. X. Chen, E. S. Daus, and A. Jüngel, “Global Existence Analysis of Cross-Diffusion Population Systems for Multiple Species,” Arch. Rational Mech. Anal., 227, 715–747 (2018).

    Article  MathSciNet  Google Scholar 

  4. J. Fontbona and S. Meleard, “Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium,” J. Math. Biology, 70, No. 4, 829–854 (2015).

    Article  MathSciNet  Google Scholar 

  5. G. Galiano and V. Selgas, “On a cross-diffusion segregation problem arising from a model of interacting particles,” Nonlinear Anal. Real World Appl., 18, 34–49 (2014).

    Article  MathSciNet  Google Scholar 

  6. D. Talay and M. Tomasevic, “A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: the one-dimensional case,” Bernoulli, 26, No. 2, 1323–1353 (2020).

    Article  MathSciNet  Google Scholar 

  7. Ya. I. Belopolskaya, “Stochastic interpretation of quasilinear parabolic systems with cross diffusion,” TVP, 61, No. 2, 208–234 (2017).

    Article  MathSciNet  Google Scholar 

  8. Ya. Belopolskaya, “Probabilistic representation of the Cauchy problem solutions for systems of nonlinear parabolic equations,” Global Stoch. Anal., 3, No. 1, 25–32 (2016).

    MathSciNet  Google Scholar 

  9. Ya. I. Belopolskaya and A. O. Stepanova, “Stochastic interpretation of the system MHDBurgers,” Zap. Nauchn. Semin. POMI, 466, 7–29 (2017).

    Google Scholar 

  10. A. Le Cavil, N. Oudjane, and F. Russo, “Forward Feynman–Kac type representation for semilinear nonconservative partial differential equations,” (2017), https://hal.archivesouvertes.fr/hal-01353757v3/document.

  11. A. Le Cavil, N. Oudjane, and F. Russo, “Monte-Carlo algorithms for a forward Feynman–Kac type representation for semilinear nonconservative partial differential equations,” Monte Carlo Methods Appl., 24, No. 1, 55–70 (2018).

    Article  MathSciNet  Google Scholar 

  12. E. F. Keller and L. A. Segel, “Initiation of slime mold aggregation viewed as an instability,” J. Th. Biol., 26, 399–415 (1970).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Belopolskaya.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 474, 2018, pp. 7–27.

Translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belopolskaya, Y.I. Stochastic Models of Chemotaxis Processes. J Math Sci 251, 1–14 (2020). https://doi.org/10.1007/s10958-020-05059-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05059-7

Navigation