Skip to main content
Log in

Classification of Symmetry Properties of the (1 + 2)-Dimensional Reaction–Convection–Diffusion Equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We present a classification of the symmetry properties of the (1 + 2)-dimensional reaction–convection– diffusion equation depending on the values of nonlinearities in this equation. The Lie symmetry is used for the construction of invariant ansatzes, reduction, and finding the exact solutions of the analyzed equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lie, “”Uber die integration durch bestimmte integrale von einer Klasse linear partieller differential gleichung,” Arch. Math.,6, No. 3, 328–368 (1881).

  2. L. V. Ovsyannikov, “Group properties of nonlinear heat-conduction equations,” Dokl. Akad. Nauk SSSR,125, 492–495 (1959).

    MathSciNet  MATH  Google Scholar 

  3. V. L. Katkov, “Group classification and solutions of the Hopf equation,” Zh. Prikl. Mekh. Teor. Fiz.,6, 105–106 (1965).

    MathSciNet  Google Scholar 

  4. V. A. Tychinin, “Symmetry and exact solutions of the equation ut=h(u)uxx;” in: Symmetry Analysis and Solutions of the Equations of Mathematical Physics, Proc. of the Institute of Mathematics, Academy of Sciences of Ukr. SSR [in Russian], Kiev, No. 8 (1988), pp. 72–77.

  5. V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii, “Group properties of the heat-conduction equation with sources in two and three-dimensional cases,” Differents. Uravn.,19, 1215–1223 (1983).

    Google Scholar 

  6. V. A. Dorodnitsyn, “Invariant solutions of the nonlinear heat-conduction equation with sources,” Zh. Vychisl. Mat. Mat. Fiz.,22, No. 6, 1393–1400 (1982).

    MathSciNet  Google Scholar 

  7. A. Oron and P. Rosenau, “Some symmetries of the nonlinear heat and wave equations,” Phys. Lett. A,118, No. 4, 172–176 (1986).

    Article  MathSciNet  Google Scholar 

  8. C. M. Yung, K. Verburg, and P. Baveye, “Group classification and symmetry reductions of the nonlinear diffusion–convection equation ut=(D(u)ux)xK′(u)ux;” Int. J. Nonlin. Mech.,29, No. 3, 273–278 (1994).

    Article  Google Scholar 

  9. M. P. Edwards, “Classical symmetry reductions of nonlinear diffusion-convection equations,” Phys. Lett. A,190, 149–154 (1994).

    Article  MathSciNet  Google Scholar 

  10. I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Group classification of the equations of nonlinear filtration,” Dokl. Akad. Nauk SSSR,293, 1033–1035 (1987).

    MathSciNet  MATH  Google Scholar 

  11. R. O. Popovych and N. M. Ivanova, “New results on group classification of nonlinear diffusion–convection equations,” J. Phys. A.: Math. Gen.,37, 7547–7565 (2004).

  12. A. A. Abramenko, V. I. Lahno, and A. M. Samoilenko, “Group classification of nonlinear evolutionary equations. II. Invariance under solvable groups of local transformations,” Differents. Uravn.,38, No. 4, 482–489 (2002).

    Google Scholar 

  13. V. I. Lagno and A. M. Samoilenko, “Group classification of nonlinear evolutionary equations. I. Invariance under semisimple groups of local transformations,” Differents. Uravn.,38, No. 3, 365–372 (2002).

    MATH  Google Scholar 

  14. V. I. Lahno, S. V. Spichak, and V. I. Stohnii, Symmetry Analysis of the Evolutionary-Type Equations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2002).

  15. P. Basarab-Horwath, V. Lahno, and R. Zhdanov, “The structure of Lie algebras and the classification problem for partial differential equations,” Acta Appl. Math.,69, No. 1, 43–94 (2001).

    Article  MathSciNet  Google Scholar 

  16. R. Z. Zhdanov and V. I. Lahno, “Group classification of heat conductivity equations with a nonlinear source,” J. Phys. A: Math. Gen.,32, 7405–7418 (1999).

    Article  MathSciNet  Google Scholar 

  17. S. V. Spichak and V. I. Stohnii, “Symmetry classification and exact solutions of the one-dimensional Fokker–Planck equation with arbitrary coefficients of drift and diffusion,” J. Phys. A,32, No. 47, 8341–8353 (1999).

    Article  MathSciNet  Google Scholar 

  18. S. V. Spichak and V. I. Stohnii, “Symmetry classification of the one-dimensional Fokker–Planck equation with arbitrary drift and diffusion coefficients,” Nelin. Kolyv.,2, No. 3, 401–413 (1999).

    MATH  Google Scholar 

  19. M. I. Serov and R. M. Cherniha, “Lie symmetries and exact solutions of the nonlinear heat-conduction equation with convective term,” Ukr. Mat. Zh.,49, No. 9, 1262–1270 (1997); English translation:Ukr. Math. J.,49, No. 9, 1423–1433 (1997).

  20. R. Cherniha and M. Serov, “Symmetries ans¨atze and exact solutions of nonlinear second-order evolution equations with convection terms,” Europ. J. Appl. Math.,9, 527–542 (1998).

    Article  Google Scholar 

  21. R. Cherniha, M. Serov, and I. Rassokha, “Lie symmetries and form-preserving transformations of reaction–diffusion–convection equations,” J. Math. Anal. Appl.,342, 1363–1379 (2008).

    Article  MathSciNet  Google Scholar 

  22. R. Cherniha, M. Serov, and O. Pliukhin, Nonlinear Reaction–Diffusion–Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications, CRC Press, Boca Raton (2018).

    MATH  Google Scholar 

  23. A. F. Barannyk and I. I. Yuryk, “On exact solutions of nonlinear diffusion equations,” Ukr. Mat. Zh.,57, No. 8 1011–1019 (2005); English translation:Ukr. Math. J.,57, No. 8, 1189–1200 (2005).

  24. I. I. Yuryk and T. A. Barannyk, “Wave solutions of the nonlinear diffusion equation,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], Kyiv, 3, No. 2 (2006), pp. 331–336.

  25. G. P. Ivanitskii, A. B. Medvinskii, and M. A. Tsyganov, “From chaos to ordering by an example of motion of the microorganisms,” Usp. Mat. Nauk,161, No. 4, 13–71 (1991).

    Article  Google Scholar 

  26. L. A. Kozdoba, Methods for the Solution of Nonlinear Problems of Heat Conduction [in Russian], Nauka, Moscow (1975).

  27. W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Vol. I, Academic Press, New York (1965).

  28. W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Vol. II. Mathematics in Science and Engineering, Academic Press, New York (1972).

  29. H.Wilhelmsson, “Oscillations and transition to equilibrium in the presence of relationships between temperature and density in fusion plasmas,” Ukr. Fiz. Zh., 38, No. 1, 44–53 (1993).

    Google Scholar 

  30. H. Wilhelmsson, “Plasma temperature and density dynamics including particle and heat pinch effects,” Phys. Scripta,46, 177–181 (1992).

    Article  Google Scholar 

  31. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer, Berlin (1975).

    MATH  Google Scholar 

  32. J. D. Murray, Nonlinear Partial Differential Equations Models in Biology, Clarendon Press, Oxford (1977).

    Google Scholar 

  33. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: the Theory of the Steady State, Clarendon Press, Oxford (1975).

    MATH  Google Scholar 

  34. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: Vol. 2: Questions of Uniqueness Stability, and Transient Behavior, Clarendon Press, Oxford (1975).

  35. N. F. Britton, Essential Mathematical Biology, Springer, London (2003).

    Book  Google Scholar 

  36. L. Edelstein-Keshet, Mathematical Models in Biology, Society for Industrial and Applied Mathematics, Philadelphia (2005).

    Book  Google Scholar 

  37. Y. Kuang, J. D. Nagy, and S. E. Eikenberry, Introduction to Mathematical Oncology, CRC Press, Boca Raton (2016).

    MATH  Google Scholar 

  38. J. D. Murray, Mathematical Biology, Vol 1. An Introduction, Springer, New York (2002).

    Book  Google Scholar 

  39. J. D. Murray, Mathematical Biology, Vol 2. Spatial Models and Biomedical Applications, Springer, New York (2003).

    Book  Google Scholar 

  40. A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer, New York (2001).

    Book  Google Scholar 

  41. R. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple and MATLAB. Undergraduate Text in Mathematics, Springer, New York (2009).

    Book  Google Scholar 

  42. J.Waniewski, Theoretical Foundations for Modeling of Membrane Transport in Medicine and Biomedical Engineering, Inst. Comput. Sci. PAS, Warsaw (2015).

    Google Scholar 

  43. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  44. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986).

    Book  Google Scholar 

  45. I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Nonlocal symmetries. Heuristic approach,” in: VINITI Series in Contemporary Problems of Mathematics (Fundamental Trends) [in Russian], Vol. 34, VINITI, Moscow (1989), pp. 3–83; English translation:J. Sov. Math.,55, No. 1, 1401–1450 (1991).

  46. M. I. Serov and I. V. Rassokha, Symmetry Properties of the Reaction–Convection–Diffusion Equations [in Ukrainian], Poltava Nats. Tekh. Univer., Poltava (2013).

    MATH  Google Scholar 

  47. V. I. Fushchich, V. M. Shtelen’, and N. I. Serov, Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics [in Russian], Naukova Dumka, Kiev (1989).

  48. V. I. Fushchich, N. I. Serov, and T. K. Amerov, On Nonlocal Ansatzes for One Nonlinear One-Dimensional Heat-Conduction Equation [in Russian], Naukova Dumka, Kiev (1989).

  49. J. R. King, “Some nonlocal transformations between nonlinear diffusion equation,” J. Math. Phis.,23, 5441–5464 (1990).

    Article  MathSciNet  Google Scholar 

  50. E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, Akadem. Verlag. Geest, Leipzig (1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Prystavka.

Additional information

Translated from Neliniini Kolyvannya, Vol. 22, No. 1, pp. 98–117, January–March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, M.I., Serova, M.M. & Prystavka, Y.V. Classification of Symmetry Properties of the (1 + 2)-Dimensional Reaction–Convection–Diffusion Equation. J Math Sci 247, 328–350 (2020). https://doi.org/10.1007/s10958-020-04805-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04805-1

Navigation