Skip to main content
Log in

Equations of the Dynamics of Spinning Particles in General Relativity

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We analyze the role of the Mathisson–Papapetrou equations in establishing the regularities of spingravitational interaction under the conditions of ultrarelativistic motions of spinning particles in the fields of black holes and neutron stars. In recent years, these equations are extensively used in the investigation of spin-gravitational effects. At the same time, it is necessary to perform the detailed analysis of the specific features of ultrarelativistic motions of spinning particles. This is done in the present paper. We apply the representation of the Mathisson–Papapetrou equations in terms of comoving tetrads, which enables us to reveal physical foundations of the specific features of spingravitational effects for spinning particles. We also make conclusions that follow from the obtained new solutions of the Mathisson–Papapetrou equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Plyatsko, Manifestations of the Gravitational Ultrarelativistic Spin-Orbit Interaction [in Ukrainian], Naukova Dumka, Kyiv (1988).

  2. D. Bini and A. Geralico, “Hyperbolic-like elastic scattering of spinning particles by a Schwarzschild black hole,” Gen. Relat. Gravit., 49, No. 6, 84 (2017). https://doi.org/10.1007/s10714-017-2247-2.

  3. E. Corinaldesi and A. Papapetrou, “Spinning test-particles in general relativity. II,” Proc. Roy. Soc. Lond. A, 209, 259–268 (1951). https://doi.org/10.1098/rspa.1951.0201.

    Article  MathSciNet  Google Scholar 

  4. L. F. O. Costa, J. Natario, and M. Zilhão, “Spacetime dynamics of spinning particles: Exact electromagnetic analogies,” Phys. Rev. D, 93, No. 10, 104006 (2016). https://doi.org/10.1103/PhysRevD.93.104006.

  5. G. D’Ambrosi, S. Kumar, J. Van de Vis, and J. W. Van Holten, “Spinning bodies in curved spacetime,” Phys. Rev. D, 93, No. 4, 044051 (2016). https://doi.org/10.1103/PhysRevD.93.044051.

  6. W. G. Dixon, “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum,” Proc. Roy. Soc. Lond. A, 314, No. 1519, 499–527 (1970). https://doi.org/10.1098/rspa.1970.0020

    Article  MathSciNet  Google Scholar 

  7. D. Kunst, T. Ledvinka, G. Lukes-Gerakopoulos, and J. Seyrich, “Comparing Hamiltonians of a spinning test particle for different tetrad fields,” Phys. Rev. D, 93, No. 4, 044004 (2016). https://doi.org/10.1103/PhysRevD.93.044004.

  8. D. Kunst, V. Perlick, and C. Lämmerzahl, “Isofrequency pairing of spinning particles in Schwarzschild–de-Sitter spacetime,” Phys. Rev. D, 92, No. 2, 024029 (2015). https://doi.org/10.1103/PhysRevD.92.024029.

  9. M. Lanzagorta and M., Salgado, “Detection of gravitational frame dragging using orbiting qubits,” Classical Quant. Gravity, 33, No. 10, 105013 (2016). https://doi.org/10.1088/0264-9381/33/10/105013.

  10. M. Mathisson, “Neue Mechanik materialler Systeme,” Acta Phys. Polon., 6, 163–200 (1937).

    MATH  Google Scholar 

  11. B. Mikóczi, “Spin supplementary conditions for spinning compact binaries,” Phys. Rev. D, 95, No. 6, 064023 (2017). https://doi.org/10.1103/PhysRevD.95.064023.

  12. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).

    Google Scholar 

  13. N. Nicolaevici, “Bouncing Dirac particles: compatibility between MIT boundary conditions and Thomas precession,” Eur. Phys. J. Plus, 132, No. 1, 21 (2017). https://doi.org/10.1140/epjp/i2017–11297-y.

  14. Yu. N. Obukhov, A. J. Silenko, and O. V. Teryaev, “General treatment of quantum and classical spinning particles in external fields,” Phys. Rev. D, 96, No. 10, 105005 (2017). https://doi.org/10.1103/PhysRevD.96.105005.

  15. A. Papapetrou, “Spinning test-particles in general relativity. I,” Proc. Roy. Soc. Lond., A 209, 248–258 (1951). https://doi.org/10.1098/rspa.1951.0200.

    MathSciNet  MATH  Google Scholar 

  16. R. Plyatsko, “Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle,” Phys. Rev. D, 58, No. 8, 084031 (1998). https://doi.org/10.1103/PhysRevD.58.084031.

  17. R. M. Plyatsko, O. B. Stefanyshyn, and M. T. Fenyk, “Mathisson–Papapetrou–Dixon equations in the Schwarzschild and Kerr backgrounds,” Classical Quant. Gravity, 28, No. 19, 195025 (2011). https://doi.org/10.1088/0264–9381/28/19/195025.

  18. R. Plyatsko, “Ultrarelativistic circular orbits of spinning particles in a Schwarzschild field,” Classical Quant. Gravity, 22, No. 9, 1545–1551 (2005). https://doi.org/10.1088/0264-9381/22/9/004.

    Article  MathSciNet  Google Scholar 

  19. R. Plyatsko and O. Bilaniuk, “Gravitational ultrarelativistic interaction of classical particles in the context of unification of interactions,” Classical Quant. Gravity, 18, No. 23, 5187–5198 (2001). https://doi.org/10.1088/0264-9381/18/23/312.

    Article  Google Scholar 

  20. R. Plyatsko and M. Fenyk, “Antigravity: Spin-gravity coupling in action,” Phys. Rev., Ser. D, 94, No. 4, 044047 (2016). https://doi.org/10.1103/PhysRevD.94.044047.

  21. R. Plyatsko and M. Fenyk, “Highly relativistic circular orbits of spinning particle in the Kerr field,” Phys. Rev. D, 87, No. 4, 044019 (2013). https://doi.org/10.1103/PhysRevD.87.044019.

  22. R. Plyatsko and M. Fenyk, “Highly relativistic spin-gravity coupling for fermions,” Phys. Rev. D, 91, No. 6, 064033 (2015). https://doi.org/10.1103/PhysRevD.91.064033.

  23. R. Plyatsko and M. Fenyk, “Highly relativistic spinning particle in the Schwarzschild field: Circular and other orbits,” Phys. Rev. D, 85, No. 10, 104023 (2012). https://doi.org/10.1103/PhysRevD.85.104023.

  24. R. Plyatsko, M. Fenyk, and V. Panat, “Highly relativistic spin-gravity-Λ coupling,” Phys. Rev. D, 96, No. 6, 064038 (2017). https://doi.org/10.1103/PhysRevD.96.064038.

  25. R. Plyatsko, M. Fenyk, and O. Stefanyshyn, “Solutions of Mathisson–Papapetrou equations for highly relativistic spinning particles,” in: D. Puetzfeld et al. (editors), Equations of Motion in Relativistic Gravity, Springer, New York (2015), pp. 165–190.

    Chapter  Google Scholar 

  26. R. Plyatsko, O. Stefanyshyn, and M. Fenyk, “Highly relativistic spinning particle starting near \( {r}_{ph}^{\left(-\right)} \) in a Kerr field,” Phys. Rev. D, 82, No. 4, 044015 (2010). https://doi.org/10.1103/PhysRevD.82.044015.

  27. O. Yu. Tsupko, G. S. Bisnovatyi-Kogan, and P. I. Jefremov, “Parameters of innermost stable circular orbits of spinning test particles: Numerical and analytic calculations,” Gravitation Cosmol., 22, No. 2, 138–147 (2016). https://doi.org/10.1134/S0202289316020158.

    Article  MathSciNet  Google Scholar 

  28. R. Wald, “Gravitational spin interaction,” Phys. Rev. D, 6, No. 2, 406–413 (1972). https://doi.org/10.1103/PhysRevD.6.406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. М. Plyatsko.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 60, No. 3, pp. 89–96, August–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plyatsko, R.М., Fenyk, М.Т. Equations of the Dynamics of Spinning Particles in General Relativity. J Math Sci 246, 225–233 (2020). https://doi.org/10.1007/s10958-020-04732-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04732-1

Navigation