Skip to main content
Log in

Localized Modes Due to Defects in High Contrast Periodic Media Via Two-Scale Homogenization

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The spectral problem for an infinite periodic medium perturbed by a compact defect is considered. For a high contrast small ε-size periodicity and a finite size defect we consider the critical ε2-scaling for the contrast. We employ two-scale homogenization for deriving asymptotically explicit limit equations for the localized modes and associated eigenvalues. Those are expressed in terms of the eigenvalues and eigenfunctions of a perturbed version of a two-scale limit operator introduced by V. V. Zhikov with an emergent explicit nonlinear dependence on the spectral parameter for the spectral problem at the macroscale. Using the method of asymptotic expansions supplemented by a high contrast boundary layer analysis, we establish the existence of the actual eigenvalues near the eigenvalues of the limit operator, with “ε square root” error bounds. An example for circular or spherical defects in a periodic medium with isotropic homogenized properties is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications,” Sb. Math. 191, No. 7, 973–1014 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. V. Zhikov, “On spectrum gaps of some divergent elliptic operators with periodic coefficients,” St. Petersb. Math. J. 16, No. 5, 773–790 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. V. Zhikov and S. E. Pastukhova, “On gaps in the spectrum of the operator of elasticity theory on a high contrast periodic structure,” J. Math. Sci., New York 188, No. 3, 227–240 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. V. Zhikov and S. E. Pastukhova, “Operator estimates in homogenization theory,” Russ. Math. Surv. 71, No. 3, 417–511 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. V. Jikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin (1994).

    Book  Google Scholar 

  6. V. V. Zhikov, “On operator estimates in homogenization theory,” Dokl. Math. 72, No. 1, 534–538 (2005).

    MathSciNet  MATH  Google Scholar 

  7. P. Kuchment, “The mathematics of photonic crystals,” In: Mathematical Modeling in Optical Science, pp. 207–272, SIAM, Front. Appl. Math., Philadelphia, PA (2001).

  8. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light, Princeton Univ. Press, Princeton, NJ (1995).

  9. P. Russell, “Photonic crystal fibers,” Science 299, No. 5605, 358–362 (2003).

    Article  Google Scholar 

  10. J. Pottage et al. “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Optics Express 11, No. 22, 2854–2861 (2003).

    Article  Google Scholar 

  11. A. Figotin and P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. II: Two-dimensional photonic crystals,” SIAM J. Appl. Math. 56, No. 6, 1561–1620 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Hempel and K. Lienau, “Spectral properties of periodic media in the large coupling limit,” Commun. Partial Differ. Equations 25, No. 7-8, 1445–1470 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Bouchitté and D. Felbacq, “Homogenization near resonances and artificial magnetism from dielectrics,” C. R., Math., Acad. Sci. Paris 339, No. 5, 377–382 (2004).

  14. S. E. Golowich and M.I. Weinstein, Scattering resonances of microstructures and homogenization theory, Multiscale Model. Simul. 3, No. 3, 477–521 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization,” SIAM J. Math. Anal. 20, No. 3, 608–623 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Allaire. “Homogenization and two-scale convergence,” SIAM J. Math. Anal. 23, No. 6, 1482–1518 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Sh. Birman, “The spectrum of singular boundary problems,” Am. Math. Soc., Transl., II. Ser. 53, 23-80 (1966).

    MATH  Google Scholar 

  18. A. Alama, M. Avellaneda, P. A. Deift, and R. Hempel, “On the existence of eigenvalues of a divergence-form operator A+λB in a gap of σ(A),” Asymptotic Anal. 8, No. 4, 311–344 (1994).

    MathSciNet  MATH  Google Scholar 

  19. A. Figotin and A. Klein, “Localized classical waves created by defects,” J. Stat. Phys. 86, No. 1-2, 165–177 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Bensoussan, J.-L. Lions, and G. C. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam etc. (1978).

  21. E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Springer, Berlin etc. (1980).

  22. N. S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Kluwer Acad., Dordrecht etc. (1989).

  23. G. V. Sandrakov, “Averaging of nonstationary problems in the theory of strongly nonhomogeneous elastic media,” Dokl. Math. 57, No. 1, 54–57 (1998).

    MathSciNet  Google Scholar 

  24. A. Yu. Belyaev, “Compression waves in a fluid with gas bubbles” J. Appl. Math. Mech. 52, No. 3, 344–348 (1988).

  25. V. V. Zhikov, “Spectral approach to asymptotic diffusion problems,” Differ. Equations 25, No. 1, 33–39 (1989).

    MathSciNet  MATH  Google Scholar 

  26. G. Allaire, and C. Conca, “Bloch wave homogenization and spectral asymptotic analysis,” J. Math. Pures Appl., IX. Sér. 77, No. 2, 153–208 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Sh. Birman and T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization,” St. Petersbg. Math. J. 15, No. 5, 639–714 (2004).

    Article  MATH  Google Scholar 

  28. V. V. Zhikov, “Spectral method in homogenization theory,” Proc. Steklov Inst. Math. 250, 85-94 (2005).

    MathSciNet  MATH  Google Scholar 

  29. M. Cherdantsev, “Spectral convergence for high-contrast elliptic periodic problems with a defect via homogenization,” Mathematika 55, No. 1-2, 29–57 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Neuss-Radu, “A result on the decay of the boundary layers in the homogenization theory,” Asymptotic Anal. 23, No. 3-4, 313–328 (2000).

    MathSciNet  MATH  Google Scholar 

  31. M.I. Vishik and A. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter” [in Russian], Usp. Mat. Nauk 12, No. 5, 3–122 (1957).

  32. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ (1970).

  33. N. O. Babych, I. V. Kamotski, and V. P. Smyshlyaev, “Homogenization in periodic media with doubly high contrasts,” Netw. Heterog. Media 3, No. 3, 413–436 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smyshlyaev.

Additional information

We dedicate this work to the memory of Professor V. V. Zhikov

Translated from Problemy Matematicheskogo Analiza 92, 2018, pp. 123-145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamotski, I.V., Smyshlyaev, V.P. Localized Modes Due to Defects in High Contrast Periodic Media Via Two-Scale Homogenization. J Math Sci 232, 349–377 (2018). https://doi.org/10.1007/s10958-018-3877-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3877-y

Navigation