Skip to main content
Log in

A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider null one-way electromagnetic fields in the Petrov type 𝒟 space-time and in the Kerr spacetime. In the class of these fields, the general solution of the Maxwell equations is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. O. Pelykh and Yu. V. Taistra, “Spinor approach to the decoupling of the system of Maxwell equations in the Riemannian space,” Pratsi NTSh. Fiz. Zb., 8, 128–133 (2011).

    Google Scholar 

  2. A. A. Starobinskii, “Amplification of waves during reflection from a rotating “black hole,” Zh. Éksper. Teor. Fiz., 64, No. 1, 48–57 (1973); English translation: Sov. Phys.–JETP, 37, No. 1, 28–32 (1973).

  3. A. A. Starobinskii and S. M. Churilov, “Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole,” Zh. Éksper. Teor. Fiz., 65, No. 1, 3–11 (1974); English translation: Sov. Phys.–JETP, 38, No. 1, 1–5 (1974).

  4. V. N. Trishin, “On the null solutions of the Maxwell equations,” Nauk. Obraz., No. 11, 183–188 (2012). DOI: https://doi.org/10.7463/1112.0489647.

  5. R. S. Borissov and P. P. Fiziev, “Exact solutions of Teukolsky master equation with continuous spectrum,” Bulg. J. Phys., 37, No. 2, 65–89 (2010).

    MathSciNet  Google Scholar 

  6. R. H. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. Math. Phys., 8, No. 2, 265–281 (1967). DOI: https://doi.org/10.1063/1.1705193.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. R. Brill, P. L. Chrzanowski, C. M. Pereira, E. D. Fackerell, and J. P. Ipser, “Solution of the scalar wave equation in a Kerr background by separation of variables,” Phys. Rev. D, 5, No. 8, 1913–1915 (1972).

    Article  MathSciNet  Google Scholar 

  8. S. Chandrasekhar, “On algebraically special perturbations of black holes,” Proc. Roy. Soc. London, A, 392, No. 1802, 1–13 (1984). DOI: https://doi.org/10.1098/rspa.1984.0021.

    Article  MathSciNet  Google Scholar 

  9. S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Univ. Press, New York (1983).

    MATH  Google Scholar 

  10. P. L. Chrzanowski, “Vector potential and metric perturbations of a rotating black hole,” Phys. Rev. D, 11, No. 8, 2042–2062 (1975). DOI:https://doi.org/10.1103/PhysRevD.11.2042.

    Article  Google Scholar 

  11. J. M. Cohen and L. S. Kegeles, “Constructive procedure for perturbations of spacetimes,” Phys. Rev. D, 19, No. 6, 1641–1664 (1979). DOI: https://doi.org/10.1103/PhysRevD.191641.

    Article  Google Scholar 

  12. J. M. Cohen and L. S. Kegeles, “Electromagnetic fields in curved spaces: A constructive procedure,” Phys. Rev. D, 10, No. 4, 1070–1084 (1974). DOI: https://doi.org/10.1103/PhysRevD.10.1070.

    Article  MathSciNet  Google Scholar 

  13. E. D. Fackerell and J. R. Ipser, “Weak electromagnetic fields around a rotating black hole,” Phys. Rev. D, 5, No. 10, 2455–2458 (1972). DOI:https://doi.org/10.1103/PhysRevD.5.2455.

    Article  Google Scholar 

  14. P. P. Fiziev, “Classes of exact solutions to the Teukolsky master equation,” Class. Quant. Grav., 27, No. 13, 135001 (2010). DOI: https://doi.org/10.1088/0264-9381/27/13/135001.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. P. Fiziev, “Exact solutions of Regge–Wheeler equation and quasinormal modes of compact objects,” Class. Quant. Grav., 23, No. 7, 2447–2468 (2006). DOI: https://doi.org/10.1088/0264-9381/23/7/015.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett., 11, No. 5, 237–238 (1963). DOI: https://doi.org/10.1103/PhysRevLett.11.237.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Krauss, https://twitter.com/lkrauss1, 25.09.2015.

  18. W. Kinnersley, “Type D vacuum metrics,” J. Math. Phys., 10, No. 7, 1195–1203 (1963). DOI: https://doi.org/10.1063/1.1664958.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Musgrave, D. Pollney, and K. Lake, GRTensorII: A Computer Algebra System for General Relativity, Queen’s Univ., Kingston, Ontario (1994), http://grtensor.phy.queensu.ca/.

    MATH  Google Scholar 

  20. E. Newman and R. Penrose, “An approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys., 3, No. 3, 566–578 (1962). DOI: https://doi.org/10.1063/1.1724257.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Penrose and W. Rindler, Spinors and Space-Time, Vol. 1: Two-Spinor Calculus and Relativistic Fields, Cambridge Univ. Press, Cambridge (1984).

    Book  MATH  Google Scholar 

  22. D. Staicova and P. Fiziev, “The Heun functions and their applications in astrophysics,” arXiv:1601.04021v1 [math–ph].–2016.

  23. J. M. Stewart, Advanced General Relativity, Cambridge Univ. Press, Cambridge (1993).

    MATH  Google Scholar 

  24. J. M. Stewart, “Hertz–Bromwich–Debye–Whittaker–Penrose potentials in general relativity,” Proc. Roy. Soc. London, A, 367, No. 1731, 527–538 (1979). DOI: https://doi.org/10.1098/rspa.1979.0101.

    Article  MathSciNet  Google Scholar 

  25. Y. V. Taistra, “New approach to decoupling Maxwell equations in curved spacetime,” in: J. Šafránková and J. Pavlů (editors), WDS’13–Proc. Contributed Papers: Part III–Physics, Matfyzpress, Prague (2013), pp. 29–32.

    Google Scholar 

  26. C. J. Talbot, “Newman–Penrose approach to twisting degenerate metrics,” Comm. Math. Phys., 13, No. 1, 46–61 (1969). DOI: https://doi.org/10.1007/BF01645269.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. A. Teukolsky, “Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrinofield perturbations,” Astrophys. J., 185, 635–648 (1973). DOI: https://doi.org/10.1086/152444.

    Article  Google Scholar 

  28. S. A. Teukolsky, “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett., 29, No. 16, 1114–1118 (1972).

    Article  Google Scholar 

  29. S. A. Teukolsky, “The Kerr metric,” arXiv:1410.2130v2 [gr–qc].–2015.

  30. G. P. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions, and Their Applications, Birkhäuser, Basel (2003). DOI: https://doi.org/10.1007/978-0-8176-8146-3.

    Book  MATH  Google Scholar 

  31. R. M. Wald, “Construction of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations,” Phys. Rev. Lett., 41, No. 4, 203–206 (1978). DOI: https://doi.org/10.1103/PhysRevLett.41.203.

    Article  MathSciNet  Google Scholar 

  32. R. M. Wald, “On perturbations of a Kerr black hole,” J. Math. Phys., 14, No. 10, 1453–1461 (1973). DOI: https://doi.org/10.1063/1.1666203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 59, No. 1, pp. 48–57, January–March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelykh, V.O., Taistra, Y.V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J Math Sci 229, 162–173 (2018). https://doi.org/10.1007/s10958-018-3668-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3668-5

Navigation