Skip to main content
Log in

Circular Unitary Ensembles: Parametric Models and Their Asymptotic Maximum Likelihood Estimates

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Parametrized families of distributions for the circular unitary ensemble in random matrix theory are considered; they are connected to Toeplitz determinants and have many applications in mathematics (for example, to the longest increasing subsequences of random permutations) and physics (for example, to nuclear physics and quantum gravity). We develop a theory for the unknown parameter estimated by an asymptotic maximum likelihood estimator, which, in the limit, behavesas the maximum likelihood estimator if the latter is well defined and the family is sufficiently smooth. They are asymptotically unbiased and normally distributed, where the norming constants are unconventional because of long range dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Adler and P. van Moerbeke, “Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice,” Comm. Math. Phys., 237, 397–440 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2003).

  3. J. Baik, P. Deift, and K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations,” J. Amer. Math. Soc., 12, 1119–1178 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Baik, P. Deift, and E. Rains, “A Fredholm determinant identity and the convergence of moments for random Young tableaux,” Comm. Math. Phys., 223, 627–672 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Baik, “Circular unitary ensemble with highly oscillatory potential,” arXiv:1306.0216v2, June 13, 2013.

  6. Z. Bai and J. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, 2nd ed., Springer Series in Statistics, Springer, New York (2010).

  7. W. J. Beenakker, “Universality in the random-matrix theory of quantum transport,” Phys. Rev. Lett., 70, 1155–1158 (1993).

    Article  Google Scholar 

  8. P. M. Bleher and A. R. Its, “Asymptotics of the partition function of a random matrix model,” Ann. Inst. Fourier (Grenoble), 55, 1943–2000 (2005).

  9. A. Borodin and A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants,” Integral Equations Operator Theory, 37, 386–396 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Borodin and G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes,” Ann. Math., 161 (2), 1319–1422 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Borodin, “Discrete gap probabilities and discrete Painlev´e equations,” Duke Math. J., 117, 489–542 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. D. Brown, Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory, Institute of Mathematical Statistics Lecture Notes Monograph Series, 9, Institute of Mathematical Statistics, Hayward, CA (1986).

  13. P. A. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Courant Lecture Notes in Mathematics, 3, New York Univ. Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc, Providence, RI (1999).

  14. P. Diaconis and S. N. Evans, “Linear functionals of eigenvalues of random matrices,” Trans. Amer. Math. Soc., 353, 2615–2633 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, “2D gravity and random matrices,” Phys. Rep., 254, No. 1–2, 133 (1995).

  16. I. Dumitriu and A. Edelman, “Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models,” J. Math. Phys., 47, No. 6:063302 (2006).

  17. F. J. Dyson, “Statistical theory of the energy levels of complex systems,” I. J. Math. Phys., 3, 140–156 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Forrester, Log-Gases and Random Matrices. London Math. Soc. Monographs Series, 34, Princeton Univ. Press, Princeton, NJ (2010).

  19. D. J. Gross and E. Witten, “Possible third-order phase transition in the large-n lattice gauge theory,” Phys. Rev. D, 21, 446–453 (1980).

    Article  Google Scholar 

  20. F. Haake, Quantum Signatures of Chaos, Springer Series in Synergetics, 2nd ed., Springer-Verlag, Berlin (2001).

  21. I. A. Ibragimov, “A theorem of Gabor Szegő,” Mat. Zametki, 3, 693–702 (1968).

    MathSciNet  MATH  Google Scholar 

  22. M. E. H. Ismail and N. S. Witte, “Discriminants and functional equations for polynomials orthogonal on the unit circle,” J. Approx. Theory, 110, 200–228 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. A. Jalabert and J. Pichard, “Quantum mesoscopic scattering: Disordered systems and Dyson circular ensembles,” J. Phys. I. France, 5, 287–324 (1995).

    Article  Google Scholar 

  24. S. R. Jammalamadaka and A. SenGupta, Topics in Circular Statistics, Series on Multivariate Analysis, 5, World Scientific Publishing Co. Inc., River Edge, NJ (2001).

  25. K. Johansson, “On random matrices from the compact classical groups,” Ann. Math. (2), 145, 519–545 (1997).

  26. K. Johansson, “The longest increasing subsequence in a random permutation and a unitary random matrix model,” Math. Res. Lett., 5, 63–82 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Johansson, “On fluctuations of eigenvalues of random Hermitian matrices,” Duke Math. J., 91, 151–204 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. V. José and R. Cordery, “Study of a quantum fermi-acceleration model,” Phys. Rev. Lett., 56, 290–293 (1986).

    Article  Google Scholar 

  29. R. Matic, “Estimation problems related to random matrix exsembles,” PhD dissertation, Georg-August-Universität, Göttingen (2006).

  30. K. T.-R. McLaughlin and P. D. Miller, “The \( \overline{\partial} \) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying non-analytic weights,” IMRP Int. Math. Res. Pap., pages Art. ID 48674, 1–77 (2006).

  31. M. L. Mehta, Random Matrices, 3rd ed., Pure and Applied Mathematics, 142, Elsevier/Academic Press, Amsterdam, (2004).

  32. R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York (1982).

  33. K. E. Muttalib and M. E. H. Ismail, “Impact of localization on Dysons circular ensemble,” J. Phys. A: Math. Gen., 28, L541–L548 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Nagao and M. Wadati, “An integration method on generalized circular ensembles,” J. Phys. Soc. Japan, 61, 1903–1909 (1992).

    Article  MathSciNet  Google Scholar 

  35. V. Periwal and D. Shevitz, “Unitary-matrix models as exactly solvable string theories,” Phys. Rev. Lett., 64, 1326–1329 (1990).

    Article  Google Scholar 

  36. P. Rambour and A. Seghier, “The generalised Dyson circular unitary ensemble: asymptotic distribution of the eigenvalues at the origin of the spectrum,” Integral Equations Operator Theory, 69, 535–555 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1. Classical Theory, Amer. Math. Soc. Colloquium Publications, 54, Amer. Math. Soc., Providence, RI (2005).

  38. A. Soshnikov, “The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities,” Ann. Probab., 28, 1353–1370 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloquium Publications, Vol. XXIII. Amer. Math. Soc., Providence, R.I. (1975).

  40. C. A. Tracy and H. Widom, “Random unitary matrices, permutations and Painlevé,” Comm. Math. Phys., 207, 665–685 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. M. Tulino and S. Verdù, “Random matrix theory and wireless communications,” Foundation and Trends in Communications and Information Theory, 1, 1–182 (2004).

    Article  MATH  Google Scholar 

  42. H. Weyl, “Theorie der Darstellungen kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen. I,” Math. Z., 23, 271–309 (1925).

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Weyl, “Theorie der Darstellungen kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen. II,” Math. Z., 24, 328–276 (1926).

    Article  MathSciNet  Google Scholar 

  44. H. Widom, “On convergence of moments for random Young tableaux and a random growth model,” Int. Math. Res. Not., 9, 455–464 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  45. E. P. Wigner, “On the statistical distribution of the widths and spacings of nuclear resonance levels,” Proc. Cambridge Phil. Soc., 47, 790–798 (1951).

    Article  MATH  Google Scholar 

  46. E. P. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” Ann. Math. (2), 62, 548–564 (1955).

  47. E. P. Wigner, “On the distribution of the roots of certain symmetric matrices,” Ann. Math. (2), 67, 325–327 (1958).

  48. J. Wishart, “The generalized product moment distribution in samples from a normal multivariate population,” Biometrika, 20, A:32–43 (1928).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Denker.

Additional information

M. Gordin is deceased.

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 441, 2015, pp. 163–186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakovic, R., Denker, M. & Gordin, M. Circular Unitary Ensembles: Parametric Models and Their Asymptotic Maximum Likelihood Estimates. J Math Sci 219, 714–730 (2016). https://doi.org/10.1007/s10958-016-3141-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3141-2

Navigation