Skip to main content

Limit Operators for Circular Ensembles

  • Chapter
  • First Online:
Frontiers in Analysis and Probability

Abstract

It is known that a unitary matrix can be decomposed into a product of reflections, one for each dimension, and that the Haar measure on the unitary group pushes forward to independent uniform measures on the reflections. We consider the sequence of unitary matrices given by successive products of random reflections.

In this coupling, we show that powers of the sequence of matrices converge in a suitable sense to a flow of operators, which acts on a random vector space. The vector space has an explicit description as a subspace of the space of sequences of complex numbers. The eigenvalues of the matrices converge almost surely to the eigenvalues of the flow, which are distributed in law according to a sine-kernel point process. The eigenvectors of the matrices converge almost surely to vectors, which are distributed in law as Gaussian random fields on a countable set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Bourgade, C.-P. Hughes, A. Nikeghbali, M. Yor, The characteristic polynomial of a random unitary matrix: a probabilistic approach. Duke Math. J. 145(1), 45–69 (2008)

    Article  MathSciNet  Google Scholar 

  2. P. Bourgade, J. Najnudel, A. Nikeghbali, A unitary extension of virtual permutations. Int. Math. Res. Not. 2013(18), 4101–4134 (2013)

    Article  MathSciNet  Google Scholar 

  3. P. Bourgade, A. Nikeghbali, A. Rouault, Circular Jacobi ensembles and deformed Verblunsky coefficients. Int. Math. Res. Not. 23, 4357–4394 (2009)

    MathSciNet  MATH  Google Scholar 

  4. P. Diaconis, M. Shahshahani, The subgroup algorithm for generating random variables. Prob. Eng. Inf. Sc. 1, 15–32 (1987)

    Article  Google Scholar 

  5. P. Diaconis, M. Shahshahani, On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994). Studies in applied probability

    Google Scholar 

  6. N.M. Katz, P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy. American Mathematical Society Colloquium Publications, vol. 45 (American Mathematical Society, Philadelphia, 1999)

    Google Scholar 

  7. J.P. Keating, N.C. Snaith, Random matrix theory andζ(1∕2 + it). Commun. Math. Phys. 214, 57–89 (2000)

    Google Scholar 

  8. J.P. Keating, N.C. Snaith, Random matrix theory and L-functions at s = 1∕2. Commun. Math. Phys. 214, 91–110 (2000)

    Google Scholar 

  9. S.-V. Kerov, G.-I. Olshanski, A.-M. Vershik. Harmonic analysis on the infinite symmetric group. C. R. Acad. Sci. Paris 316, 773–778 (1993)

    MATH  Google Scholar 

  10. R. Killip, M. Stoiciu, Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. J. 146(3), 361–399 (2009)

    Article  MathSciNet  Google Scholar 

  11. K. Maples, J. Najnudel, A. Nikeghbali, Limit operators for circular ensembles (2014). Preprint. arXiv:1304.3757

    Google Scholar 

  12. K. Maples, J. Najnudel, A. Nikeghbali, Strong convergence of eigenangles and eigenvectors for the circular unitary ensemble. Ann. Probab. 47(4), 2417–2458 (2019)

    Article  MathSciNet  Google Scholar 

  13. F. Mezzadri, How to generate random matrices from the classical compact groups. Not. AMS 54, 592–604 (2007)

    MathSciNet  MATH  Google Scholar 

  14. J. Najnudel, Eigenvector convergence for minors of unitarily invariant infinite random matrices. Int. Math. Res. Not. (2020). https://doi.org/10.1093/irmn/rnz330

  15. J. Najnudel, A. Nikeghbali, On a flow of Operators Associated to Virtual Permutations. Séminaire de Probabilités XLVI (Springer, Cham, 2014), pp. 481–512

    Google Scholar 

  16. Y.-A. Neretin, Hua type integrals over unitary groups and over projective limits of unitary groups. Duke Math. J. 114, 239–266 (2002)

    Article  MathSciNet  Google Scholar 

  17. J. Pitman, Combinatorial stochastic processes. Lecture Notes in Mathematics, vol. 1875 (Springer, Berlin, 2006). Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002, With a foreword by Jean Picard

    Google Scholar 

  18. A. Soshnikov, Determinantal random point fields. Uspekhi Mat. Nauk. 55(5(335)), 107–160 (2000)

    Google Scholar 

  19. E.C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd edn. (Oxford University Press, Oxford, 1986)

    MATH  Google Scholar 

  20. B. Valkó, B. Virág, Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Nikeghbali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maples, K., Najnudel, J., Nikeghbali, A. (2020). Limit Operators for Circular Ensembles. In: Anantharaman, N., Nikeghbali, A., Rassias, M.T. (eds) Frontiers in Analysis and Probability. Springer, Cham. https://doi.org/10.1007/978-3-030-56409-4_8

Download citation

Publish with us

Policies and ethics