Skip to main content
Log in

Problems of Parallel Solution of Large Systems of Linear Algebraic Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper considers some modern problems arising in developing parallel algorithms for solving large systems of linear algebraic equations with sparse matrices occurring in mathematical modeling of real-life processes and phenomena on a multiprocessor computer system (MCS). Two main requirements to methods and technologies under consideration are fast convergence of iterations and scalable parallelism, which are intrinsically contradictory and need a special investigation. The paper analyzes main trends is developing preconditioned iterative methods in Krylov’s subspaces based on algebraic domain decomposition and principles of their program implementation on a heterogeneous MCS with hierarchical memory structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Eisenstat, H. C. Elman, and M. H. Schultz, “Variational iterative methods for nonsymmetric systems of linear equations,” SIAM J. Numer. Anal., 20, No. 3, 345–357 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Y. Yuan, G. H. Golub, R. J. Plemmons, and W. A. Cecilio, “Semi-conjugate direction methods for real positive definite systems,” BIT, 44, No. 1, 189–207 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. P. Il’in and E. A. Itzkovich, “Semi-conjugate direction methods with dynamic preconditioning,” Sib. Zh. Industr. Mat., 10, No. 4, 41–54 (2007).

    MATH  Google Scholar 

  4. A. Ruhe, “Rational Krylov sequence methods for eigenvalue computation,” Linear Algebra Appl., 58, 391–405 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Druskin, L. Knizhnerman, and V. Simoncini, “Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation,” SIAM J. Numer. Anal., 49, No. 5, 1875–1898 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. van Gijzen and P. Sonneveld, “Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties,” ACM Trans. Math. Software, 38, No. 1 (2011), Article 5.

  7. M. B. van Gijzen, G. L. G. Sleijpen, and J.-P. M. Zemke, “Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems,” Numer. Linear Algebra Appl., 22, 1–25 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Chapman and Y. Saad, “Deflated and augmented Krylov subspace techniques,” Numer. Linear Algebra Appl., 4, No. 1, 43–66 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. L. Gurieva and V. P. Il’in, “Some parallel methods and technologies of domain decomposition,” Zap. Nauchn. Semin. POMI, 428, 89–106 (2014).

    MATH  Google Scholar 

  10. I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimensionality. Or how to use SVD in many dimensions,” SIAM J. Sci. Comput., 31, Iss. 5, 3744–3759 (2009).

  11. W. Hackbusch, Hierarchische Matrizen: Algorithmen and Analysis, Springer (2009).

  12. R. Bridson and C. Greif, “A multipreconditioned conjugate gradient algorithm,” SIAM J. Matrix Anal. Appl., 27, No. 4, 1056–1068 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Greif, T. Rees, and D. B. Szyld, MPGMRES: a generalized minimum residual method with multiple preconditioners. Tech. Rep. 11-12-23, Department of Mathematics, Temple University (2011).

  14. C. Greif, T. Rees, and D. B. Szyld, “Additive Schwarz with variable weights,” Lect. Notes Comput. Sci. Eng., 98, 779–787 (2014).

    Article  Google Scholar 

  15. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial and Applied Mathematics (2003).

  16. V. Dolean, P. Jolivet, and F. Nataf, “An introduction to domain decomposition methods: algorithms, theory and parallel implementation,” https://hal.archives-ouvertes.fr/cel-01100932.v4

  17. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory (Springer Ser. Comput. Math., 34), Springer (2005).

  18. M. T. Chu, R. E. Funderlic, and G. H. Golub, “A rank-one reduction formula and its application to matrix factorization,” SIAM Rev., 37, 512–530 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Yu. Kolotilina, “Eigenvalue bounds and inequalities using vector aggregation of matrices,” Linear Algebra Appl., 271, 139–167 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Dubois, M. J. Gander, A. St.-Cyr, S. Loisel, and D. Szyld, “The optimized Schwarz method with a coarse grid correction,” SIAM J. Sci. Comp., 34, No. 1, 421–458 (2012).

  21. Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems, “Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms,” Esaim Math. Model. Numer. Anal., 46, No. 5, 1175-1199 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. S. Butyugin, Y. L. Gurieva, V. P. Il’in, D. V. Perevozkin, A. V. Petukhov, and I. N. Skopin, “Functionality and technologies of algebraic solvers in the KRYLOV library,” Vestn. YuUrGU, 2, No. 3, 92–105 (2013).

    Google Scholar 

  23. URL: http://www.ddm.org

  24. CCA: The Common Component Architecture Forum. www.cca-forum.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Il’in.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 439, 2015, pp. 112–127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, V.P. Problems of Parallel Solution of Large Systems of Linear Algebraic Equations. J Math Sci 216, 795–804 (2016). https://doi.org/10.1007/s10958-016-2945-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2945-4

Navigation