Skip to main content
Log in

A Parallel Finite Element Discretization Algorithm Based on Grad-Div Stabilization for the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We present and study a parallel grad-div stabilized finite element discretization algorithm based on entire-overlapping domain decomposition for the numerical simulation of Navier–Stokes equations. The algorithm is easy to implement on top of existing sequential software, in which each subproblem used to calculate a local solution in its designated subregion is actually a global problem with vast of degrees of freedom coming from its own subregion, and hence, can be solved independently with other subproblems. We derive error bounds of the approximate solution by employing the technical tool of local a priori estimate, and investigate the effect of grad-div stabilization term on the approximation solutions. Numerical comparisons, with both inf-sup stable and unstable mixed finite elements pairs for the velocity and pressure, show that our present algorithm has an amazing superiority to its counterpart without stabilization in the sense that accuracy of the approximate velocities could be improved by two orders of magnitude when the viscosity \(\nu \) is small. While compared with the usual standard serial grad-div stabilized finite element method, our algorithm saves lots of CPU time in computing a solution with comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Mu, L.: Pressure robust weak Galerkin finite element methods for Stokes problems. SIAM J. Sci. Comput. 42, 608–629 (2020)

    Article  MathSciNet  Google Scholar 

  2. Mu, L., Ye, X., Zhang, S.Y.: A stablizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. SIAM J. Sci. Comput. 43, 2614–2637 (2021)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Parker, C.: Mass conserving mixed \(hp\)-FEM approximations to Stokes flow. Part I: uniform stability. SIAM J. Numer. Anal. 59, 1218–1244 (2021)

    Article  MathSciNet  Google Scholar 

  4. Ainsworth, M., Parker, C.: Mass conserving mixed \(hp\)-FEM approximations to Stokes flow. Part II: optimal convergence stability. SIAM J. Numer. Anal. 59, 1245–1272 (2021)

    Article  MathSciNet  Google Scholar 

  5. Wei, H.Y., Huang, X.H., Li, A.: Piecewise divergence-free nonconforming virtual elements for Stokes problem in any dimensions. SIAM J. Numer. Anal. 59, 1835–1856 (2021)

    Article  MathSciNet  Google Scholar 

  6. Wang, G., Mu, L., Wang, Y., He, Y.N.: A pressure-robust virtual element method for the Stokes problem. Comput. Methods Appl. Mech. Eng. 382, 113879 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 42, 492–544 (2017)

    Article  MathSciNet  Google Scholar 

  8. John, V.: Finite Element Methods for Incompressible Flow Problems. Springer, Berlin (2016)

    Book  Google Scholar 

  9. Franca, L.P., Hughes, T.J.R.: Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Eng. 69, 89–129 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. Olshanskii, M.A., Reusken, A.: Grad-div stabilization for Stokes equations. Math. Comput. 73, 1699–1718 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Olshanskii, M.A., Lube, G., Heister, T., Loewe, J.: Grad-div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 3975–3988 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. De Frutos, J., Garcia-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66, 991–1024 (2016)

    Article  MathSciNet  Google Scholar 

  13. Franz, S., Hohne, K., Matthies, G.: Grad-div stabilized discretizations on S-type meshes for the Oseen problem. IMA J. Numer. Anal. 38, 299–329 (2018)

    Article  MathSciNet  Google Scholar 

  14. Qin, Y., Hou, Y.R., Wang, Y.S.: Numerical analysis of two grad-div stabilization methods for the time-dependent Stokes/Darcy model. Comput. Math. Appl. 79, 817–832 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jia, X.F., Tang, Z.Y., Feng, H.: Numerical analysis of CNLF modular grad-div stabilization method for time-dependent Navier–Stokes equations. Appl. Math. Lett. 112, 106798 (2021)

    Article  MathSciNet  Google Scholar 

  16. Li, W., Fang, J.L., Huang, P.Z.: Rotational pressure-correction method for the Stokes/Darcy model based on the modular grad-div stabilization. Appl. Numer. Math. 160, 451–465 (2021)

    Article  MathSciNet  Google Scholar 

  17. Layton, W., Manica, C.C., Neda, M., Olshanskii, M.A., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Layton, W., Manica, C.C., Neda, M., Rebholz, L.G.: Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations. Comput. Methods Appl. Mech. Eng. 199, 916–931 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Maxim, A., Olshanskii, M.A.: A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative method. Comput. Methods Appl. Mech. Eng. 191, 5515–5536 (2002)

    Article  MathSciNet  Google Scholar 

  20. Codina, R.: Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 191, 4295–4321 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gravemeier, V., Wall, W.A., Ramm, E.: Large eddy simulation of turbulent incompressible flows by a three-level finite element method. Int. J. Numer. Methods Fluids 48, 1067–1099 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Eng. 199, 841–852 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. John, V., Linke, A., Rebholz, L.G., Jenkins, E.W.: On the parameter choice in grad-div stabilization for Stokes equations. Adv. Comput. Math. 40, 491–516 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ahmed, N.: On the grad-div stabilization for the steady Oseen and Navier–Stokes equations. Calcolo 54, 471–501 (2017)

    Article  MathSciNet  Google Scholar 

  25. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14, 293–327 (2001)

    Article  MathSciNet  Google Scholar 

  27. He, Y.N., Xu, J.C., Zhou, A.H., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    Article  MathSciNet  Google Scholar 

  28. Jiang, Y., Zheng, B., Shang, Y.Q.: A parallel grad-div stabilized finite element algorithm for the Stokes equations with damping. Comput. Math. Appl. 135, 171–192 (2023)

    Article  MathSciNet  Google Scholar 

  29. He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MathSciNet  Google Scholar 

  30. Shang, Y.Q., He, Y.N.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations. Appl. Numer. Math. 60, 719–737 (2010)

    Article  MathSciNet  Google Scholar 

  31. Shang, Y.Q.: A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition for the Navier–Stokes equations. J. Math. Anal. Appl. 403, 667–679 (2013)

    Article  MathSciNet  Google Scholar 

  32. Shang, Y.Q., Qin, J.: A two-parameter stabilized finite element method for incompressible flows. Numer. Methods PDEs 33, 425–444 (2016)

    Article  MathSciNet  Google Scholar 

  33. Tang, Q.L., Huang, Y.Q.: Analysis of parallel finite element algorithm based on three linearization methods for the steady incompressible MHD flow. Comput. Math. Appl. 78, 35–54 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zheng, B., Shang, Y.Q.: A parallel finite element method based on fully overlapping domain decomposition for the steady-state Smagorinsky model. Comput. Math. Appl. 147, 76–91 (2023)

    Article  MathSciNet  Google Scholar 

  35. Evans, C.L.: Partial Differential Equations, 2nd edn. Department of Mathmatics University of California, Springer, Berkeley (2010)

    Google Scholar 

  36. Raviart, P.A., Girault, V.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1996)

    Google Scholar 

  37. Rannacher, R., Heywood, J.G.: Finite element approximation of the nonstationary Navier–Stokes problems: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  38. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    Google Scholar 

  39. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  40. He, Y.N., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    Book  Google Scholar 

  42. Zheng, B., Shang, Y.Q.: A two-level stabilized quadratic equal-order finite element variational multiscale method for incompressible flows. Appl. Math. Comput. 384, 12537 (2020)

    MathSciNet  Google Scholar 

  43. Zheng, H.B., Shan, L., Hou, Y.R.: A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations. Numer. Methods Partial Differ. Equ. 26, 1180–1190 (2010)

    Article  MathSciNet  Google Scholar 

  44. Becker, R., Braack, M.: A finite elements pressure gradent stabilization for the Stokes equations based on local projections. Cacolo 38, 173–199 (2001)

    Google Scholar 

  45. Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)

    Article  Google Scholar 

  46. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–441 (1982)

    Article  ADS  Google Scholar 

  47. Gartling, D.K.: A test problem for outflow boundary conditions-flow over a backward-facing step. Int. J. Numer. Methods Fluids 11, 953–967 (1990)

    Article  ADS  Google Scholar 

  48. Tuann, S.Y., Olson, M.D.: Numerical studies of the flow around a circular cylinder by a finite element method. Comput. Fluids 6, 219–240 (1978)

    Article  ADS  Google Scholar 

  49. Ding, H., Shu, C., Yeo, K.S., Xu, D.: Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method. Comput. Methods Appl. Mech. Eng. 193, 727–744 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the anonymous referees who made valuable suggestions for revision and improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqiang Shang.

Ethics declarations

Competing interest

The authors declare that this work does not have any competing interests.

Additional information

Communicated by S. Turek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Natural Science Foundation of Chongqing Municipality, China (No. cstc2021jcyj-msxmX1044).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Zhu, J. & Zheng, B. A Parallel Finite Element Discretization Algorithm Based on Grad-Div Stabilization for the Navier–Stokes Equations. J. Math. Fluid Mech. 26, 42 (2024). https://doi.org/10.1007/s00021-024-00868-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-024-00868-1

Keywords

Mathematics Subject Classification

Navigation